Measuring Language Development from Child-Centered Recordings

Yaya Sy¹, William N. Havard^{1,2}, Marvin Lavechin^{1,2,3}, Emmanuel Dupoux^{1,2,3}, Alejandrina Cristia¹ ¹Laboratoire de Sciences Cognitives et de Psycholinguistique, Département d'Études Cognitives, ENS, EHESS, CNRS, PSL University ² Cognitive Machine Learning Team, INRIA ³ Meta AI Research, France

Introduction & Goals

- Today, measuring child language development (CLD) from spontaneous corpora requires costly human labor (describing languages, transcribing speech).
- Our proposal includes:
 - (1) a new CLD metric based on entropy from a corpus of text in the relevant language

(1) a new CLD metric based on entropy from a corpus of text in the relevant language (2) how to derive this metric from speech from a smaller text+speech parallel corpus

Methods & Results

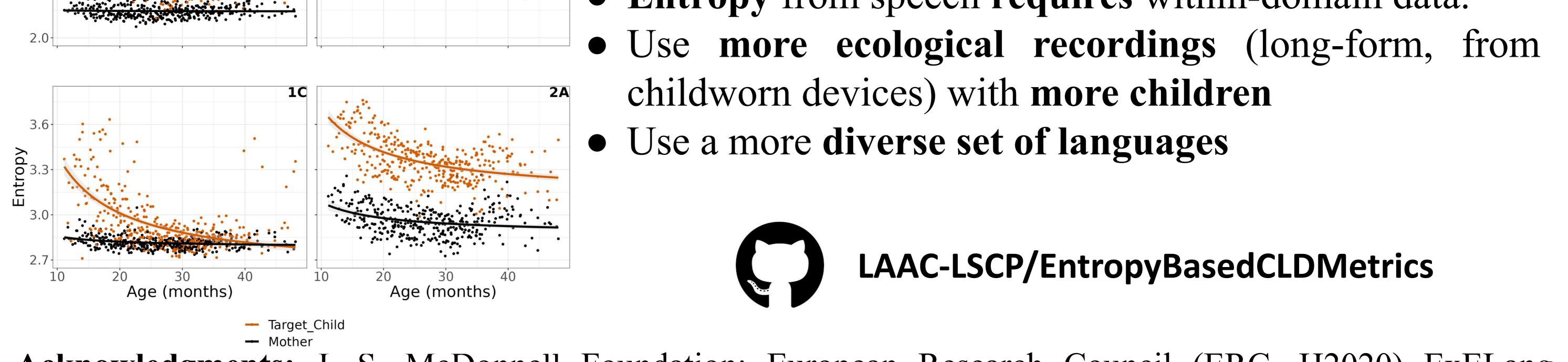
Experiments: Model, data, and units for the relevant analyses. Training: LIBRI. stands for LibriSpeech; THOM. stands for Thomas. Test always drew from Providence, which contains speech & transcriptions for 6 English learning children aged 11-48 months

Exp.	Model	Model input units	Train	Test	
1A		phones	LIBRI. text	text	
1B	5-gram language model	HUBERT-BASE discrete clusters	Libri. audio	speech	
$1\mathrm{C}$		IIUDERT-DASE discrete clusters		synthetic speech	
2A	linoar rogrossion	speech (+ text entropies at training time)	THOM.	speech	
2B	linear regression	τ speech (τ text entropies at training time)	LIBRI.		

Fit of our entropy metric to predictions. Mixed-model regressions predicting entropy from child age (yielding intercept & β , ρ CLD metric shows how entropy correlates with children's development as measured by lexical diversity (VOCD), and morphosyntactic complexity (MLU, IPSyn)

	Intercept (Std. Error)		β age (Std. Error)		$ ho~{ m CLD}~{ m metric}$		
Exp.	Child	Mother	Child \downarrow	Mother \leftrightarrow	VOCD	MLU	IPSyn
$1\mathrm{A}$	$5.06 \ (0.23)^*$	$ 2.97 (0.07)^*$	$ -0.31 (0.06)^*$	0.01 (0.02)	-0.23	-0.56	-0.45
$1\mathrm{B}$	4.91 (0.07)	4.3(0.11)	0.01 (0.02)	0.01 (0.04)	0.03	-0.02	-0.01
$1\mathrm{C}$	$3.13\ (0.06)$	2.83(0.01)	$ -0.1\ (0.02)$	-0.01 (0.00)	-0.21	-0.56	-0.54
$2\mathrm{A}$	$3.54 \ (0.04)^*$	$3.00 (0.03)^*$	$ -0.1 (0.01)^*$	-0.02 (0.01)	-0.27	-0.73	-0.53
$2\mathrm{B}$	$2.67 (0.01)^*$	$2.57 (0.02)^*$	0.00 (0.00)	0.01 (0.01)	0.14	-0.08	-0.16

1B


1A

8.0

Entropy ^{6.0} ^{6.0}

Entropy from speech requires within-domain data.

Acknowledgments: J. S. McDonnell Foundation; European Research Council (ERC, H2020) ExELang, 101001095), HPC resources from GENCI–IDRIS (Grant 2021-AD011013145). Contact: alecristia@gmail.com