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“La lingua maternal: asi se dize de lo ke se entendya enkaza, ma, en
este kavzo, Antonio, la madre no se muere nunka. Siempre se keda
fuerte. Puedes azer el mas gran viage, kuando retornas la topas bien en
pies. En eya vive tu pasado, en eya te sientes presente a ti mismo. Las
palavras son tu verdadero lougar y tu esperanza.”

“La langue maternelle : ainsi désigne-t-on ce que l’on entendait à
la maison, mais cette mère meurt-elle jamais ? En elle veille notre
passé, en elle nous sommes tout à fait présent à nous-mêmes. Et, si
les mots sont notre vraie demeure, comment ne seraient-ils aussi une
bonne part de notre devenir ?”

“The mother tongue: that’s what we called what we spoke at home. Will
this mother ever die, Antonio? In her, our past grows old; in her, we
are completely present to ourselves. And, if words are our true domain,
how could they not also be part of our future?”

Marcel Cohen, Letra a Antonio Saura, 1997.
English Translation: Raphael Rubinstein
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Résumé

Ces dernières années, les méthodes d’apprentissage profond ont permis de créer des mod-

èles neuronaux capables de traiter plusieurs modalités à la fois. Les modèles neuronaux de

traitement de la Parole Visuellement Contextualisée (PVC) sont des modèles de ce type,

capables de traiter conjointement une entrée vocale et une entrée visuelle correspondante.

Ils sont couramment utilisés pour résoudre une tâche de recherche d’image à partir d’une

requête vocale : c’est-à-dire qu’à partir d’une description orale, ils sont entrâınés à retrou-

ver l’image correspondant à la description orale passée en entrée. Ces modèles ont suscité

l’intérêt des linguistes et des chercheurs en sciences cognitives car ils sont capables de mod-

éliser des interactions complexes entre deux modalités — la parole et la vision — et peuvent

être utilisés pour simuler l’acquisition du langage chez l’enfant, et plus particulièrement

l’acquisition lexicale.

Dans cette thèse, nous étudions un modèle récurrent de PVC et analysons les connais-

sances linguistiques que de tels modèles sont capables d’inférer comme sous-produit de la

tâche principale pour laquelle ils sont entrâınés. Nous introduisons un nouveau jeu de don-

nées qui convient à l’entrâınement des modèles de PVC. Contrairement à la plupart des jeux

de données qui sont en anglais, ce jeu de données est en japonais, ce qui permet d’étudier

l’impact de la langue d’entrée sur les représentations apprises par les modèles neuronaux.

Nous nous concentrons ensuite sur l’analyse des mécanismes d’attention de deux modèles

de PVC, l’un entrainé sur le jeu de données en anglais, l’autre sur le jeu de données en

japonais, et montrons que les modèles ont développé un comportement général, valable

quelle que soit la langue utilisée, en utilisant leur poids d’attention pour se focaliser sur

des noms spécifiques dans la châıne parlée. Nos expériences révèlent que ces modèles sont

également capables d’adopter un comportement spécifique à la langue en prenant en compte

les particularités de la langue d’entrée afin de mieux résoudre la tâche qui leur est donnée.

Nous étudions ensuite si les modèles de PVC sont capables d’associer des mots isolés à

leurs référents visuels. Cela nous permet d’examiner si le modèle a implicitement segmenté

l’entrée parlée en sous-unités. Nous étudions ensuite comment les mots isolés sont stockés

dans les poids des réseaux en empruntant une méthodologie issue de la linguistique, le

paradigme de gating, et nous montrons que la partie initiale du mot joue un rôle majeur

pour une activation réussie.

Enfin, nous présentons une méthode simple pour introduire des informations sur les

frontières des segments dans un modèle neuronal de traitement de la parole. Cela nous

permet de tester si la segmentation implicite qui a lieu dans le réseau est aussi efficace qu’une

segmentation explicite. Nous étudions plusieurs types de frontières, allant des frontières de

phones aux frontières de mots, et nous montrons que ces dernières donnent les meilleurs

résultats. Nous observons que donner au réseau plusieurs frontières en même temps est

bénéfique en permettant au réseau de prendre en compte la nature hiérarchique de l’entrée

linguistique.

Mots clefs : acquisition du langage visuellement contextualisé, modèle de traitement de

la parole visuellement contextualisée, acquisition lexicale, acquisition du langage.
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Abstract

In the past few years, deep learning methods have allowed researchers to design neural

models that are able to process several modalities at once. Neural models of Visually

Grounded Speech (VGS) are such kind of models and are able to jointly process a spoken

input and a matching visual input. They are commonly used to solve a speech-image

retrieval task: given a spoken description, they are trained to retrieve the closest image that

matches the description. Such models sparked interest in linguists and cognitive scientists as

they are able to model complex interactions between two modalities — speech and vision

— and can be used to simulate child language acquisition and, more specifically, lexical

acquisition.

In this thesis, we study a recurrent-based model of VGS and analyse the linguistic

knowledge such models are able to derive as a by-product of the main task they are trained

to solve. We introduce a novel data set that is suitable to train models of visually grounded

speech. Contrary to most data sets that are in English, this data set is in Japanese and

allows us to study the impact of the input language on the representations learnt by the

neural models.

We then focus on the analysis of the attention mechanisms of two VGS models, one

trained on the English data set, the other on the Japanese data set, and show the models

have developed a language-general behaviour by using their attention weights to focus on

specific nouns in the spoken input. Our experiments reveal that such models are able

to adopt a language-specific behaviour by taking into account particularities of the input

language so as to better solve the task they are given.

We then study if VGS models are able to map isolated words to their visual referents.

This allows us to investigate if the model has implicitly segmented the spoken input into

sub-units. We further investigate how isolated words are stored in the weights of the network

by borrowing a methodology stemming from psycholinguistics, the gating paradigm, and

show that word onset plays a major role in successful activation.

Finally, we introduce a simple method to introduce segment boundary information in

a neural model of speech processing. This allows us to test if the implicit segmentation

that takes place in the network is as effective as an explicit segmentation. We investigate

several types of boundaries, ranging from phone to word boundaries, and show the latter

yield the best results. We observe that giving the network several boundaries at the same

time is beneficial. This allows the network to take into account the hierarchical nature of

the linguistic input.

Keywords: grounded language learning, visually grounded speech model, lexical acqui-

sition, language acquisition.
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3 Informations générales sur le traitement automatique de la parole et la dé-
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Introduction

Context and Motivation

In a relatively short period of time, children are able to acquire their native language

allowing them to understand it and speak it effortlessly. This is an amazing feat, as they

are able to do so without much supervision. They indeed do not need adults around them to

explicitly teach them new words or correct them when they speak. Instead, the perceptible

surrounding context seems to provide them with all the necessary information they need in

order to acquire their native language.

According to Landau & Gleitman (1985, p. 1), “[n]o disagreement arises about the ne-

cessity for extralinguistic experience. Their [the theorists’] disagreements have to do with

the sufficiency of experience for learning a language”. Indeed, while some language acqui-

sition theories (Chomsky 1969, Pinker 2009) postulate strong innate knowledge where the

environment only plays a minor role, other (Skinner 1957, Tomasello 2009) postulate a much

larger influence of the environment. However, all these theories agree — to some extent —

on the fact that a certain amount of extralinguistic experience is necessary. Indeed, even in

the strictest inneist theories, where the child would be born with a knowledge of grammat-

ical and conceptual entities, a mapping still has to operate between the abstract entities

of the human mind and their realisation in the physicial world, which is only perceptively

accessible.

Landau & Gleitman (1985, p. 7) state that “the child’s input consists of sound/situation

pairs, but his final output is a set of form/meaning pairs, appropriate to an infinite set of

novel but well-circumscribed situations”. The question is how do children transition from

sound/situation pairs to form/meaning pairs? One step children have to go through is

to understand that the sounds they perceive constitute conventional signs used for com-

munication purposes, and not random sounds. This step might not be the first step chil-

dren go through, but it is a critical step to go from sound to form. Transitioning from

sound/situation to form/meaning pairs also implies a segmentation step. The first segmen-

tation step we could think of is the segmentation of the speech stream into forms. Indeed,

the speech stream contains a sequence of forms, which are however connected and not neatly

separated from one another. Children thus have to learn how to segment the speech stream

appropriately so as to discover the conventional word forms used in their native language.

The second segmentation step we could think of consists in analysing the environment so as

to identify and extract the stakeholders: who is talking, to whom, about what, etc. While

the first step involves identifying patterns in the spoken modality, the other step involves

identifying patterns in other modalities (visual, haptic, etc.). We presented these two steps

as separate or as if they occurred sequentially but it is in fact not the case, as they do

occur simultaneously. Moreover, these two steps seem to be fueled by similar routines in

the child’s mind (e.g. statistical sensitivity, see Kirkham et al. 2002).

Once forms have been extracted from the speech stream, and referents extracted from the

environment, the child has to learn to map both. At this step, the child has transitioned from

sound/situation to form/referent pairs. The associations the child makes might be coarse at

first, where a word-form is associated to as specific referent (e.g. dog for the house pet), but

the child is ultimately able to abstract the commonalities between different referents of the

same word-form and derive a meaning. This involves a certain amount of conceptualisation,

and ultimately allows the child to build a set of form/meaning pairs. Lexical acquisition

refers to one of the processes that results from the transition from sound/situation pairs to
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a set of form/meaning pairs (other processes include the acquisition of syntax and syntactic

frames, the acquisition of phonology, etc.).

The form/meaning pairs the child builds should be stored in such a way they can be

easily accessed so as to parse the speech stream and to build its own utterances. Hence, the

stored word forms should be specific enough so as to not allow for similar sounding word-

forms to be recognised, while not being overly specific so as to accomodate for variation

and mispronounciations. This step is commonly referred to as word recognition.

In this thesis, we propose to study an neural model of visually grounded speech. Visually

grounded speech models are models that are trained to solve a speech/image retrieval task.

That is, given a spoken description of an image, they should find the closest matching image

among a collection of images (or vice-versa, find a spoken description given an image). To

do so, such networks have to learn how to appropriately transform the input image and

the input spoken description so that it is easy to find one given the other. The task such

networks have to solve is thus very close to that of a child acquiring her native language.

Indeed, such networks are presented with sound/situation pairs (i.e. a spoken description

and its matching image), and in order to find the correct matching image, we hypothetise

that the network should learn to transform this pair into a form/meaning pair. Indeed, in

order to find the matching image among a collection of images given a spoken utterance,

it should somehow segment the speech stream into sub-units, so that the resulting sub-

units refer to objects in the image. The representation of the extracted units should be

specific enough so that when prompted with these units, the network only retrieves images

featuring instances that the spoken unit refers to. Similarly to humans, on the image

side, the network should be able to abstract the referent, so that the target image can be

retrieved, even if the object is presented in a non-canonical manner or among a cluttered

environment. Consequently, the task neural models of visually grounded speech are trained

to solve is a task which is very close to the one of children learning their mother tongue, and

more specifically is very close to the task of lexical acquisition. They have to go through

the same steps than a child, which are: segmentation, mapping, and recognition.

Contributions

In this thesis, we study a recurrent-based model of visually grounded speech. As such

models solve a task similar to that of children, who discover the set form/meaning pairs of

their native language, our analyses focus on understanding if neural models do so in the

same way.

In this manuscript, we present the following contributions:

(i) We introduce a spoken extension of an image captioning data set that is suitable to

train visually grounded speech models. Unlike most data sets of visually grounded

speech which are in English, this data set is in Japanese which allows us to study in a

contrastive approach the impact of the input language (English or Japanese) on the

representations learnt by the model.

(ii) We study the patterns of the attention weights of the attention mechanisms of our

models, so as to understand what parts of the speech signal are highlighted, and to

what extent they differ from what randomness would predict. We also propose a

longitudinal investigation, where we study how these attention weights evolve during

the training phase.

(iii) We introduce a methodology stemming from the psycholiguistic litterature, the gating

paradigm (Grosjean 1980), that allows us to easily investigate spoken word activation
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and competition in our model. To the best of our knowledge, this is the first time

such methodology is used to investigate the representations learnt by neural models

of speech processing.

(iv) We propose a method to simply introduce prior linguistic information in the form of

segment boundaries (phone, syllable, or word boundaries) in a neural model of speech

processing. The method we propose allows to integrate several types of boundaries,

at different levels of the neural architecture, which allows to take into account the

hierarchical nature of the spoken input. This allows us to study if segmenting the

speech signal into sub-units allows the models to learn to better map images to their

spoken descriptions.

Thesis Outline

This thesis is divided into two parts: Part I: Background consists of two background

chapters and Part II: Contributions consists of four chapters presenting our contributions.

The chapters of this manuscript are organised as follows:

Chapter 1: Background on Child Lexical Acquisition: This chapter is structured into

three parts. In the first part, we present the strategies infants and children use in order

to segment the speech stream into sub-units. In the second part, we review how children

are able to map the segmented units they have extracted from the speech stream to

their referent, so as to ultimately acquire their meaning. Finally, in the third part, we

present several psycholinguistic models of word activation and recognition. We argue that

language acquisition, and more specifically lexical acquisition, is only possible because of

the multi-modal nature of language, and in particular, we show how the visual modality

particularly helps children in this task. This review allows us to understand how lexical

acquisition takes place in humans, and consequently, allows us to formulate hypothesis on

how the neural model we study carries out its task.

Chapter 2: Background on Speech Processing and Term Discovery: This chapter

presents the notion of unsupervised speech processing as well as the main approaches to

unsupervised speech segmentation and term discovery. We argue that in order to be most

successful, unsupervised approaches to speech segmentation and term discovery should be

grounded to another source of information. We then present the basics of machine learning

and artificial neural networks, and then review the existing models of visually grounded

speech. We end this chapter by examining the difference between simulation and modelling

and by discussing to what extent visually grounded models are indeed grounded.

Chapter 3: Visually Grounded Speech Architectures and Data: In this chapter,

we present the data sets we use in this thesis. We also introduce a new data set, the

Synthetically Spoken STAIR data set, that we created and used in our experiments. We

then present the neural architecture we use and detail the assumptions we make by using

such architecture as well as by training it using data sets initially thought for computer

vision purposes.

Chapter 4: Attention in a Model of Visually Grounded Speech: In this chapter, we

analyse the attention weights of the attention mechanisms of visually grounded speech

models trained on three different data sets: two featuring synthetic speech, and one
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featuring real human speech. Our analysis mainly focuses on which parts of speech signals

are highlighted by the models, and we make connections with child language acquisition.

As our models are trained on two languages, English and Japanese, this enables us to

observe which behaviours are language-general and which behaviours are language-specific.

Finally, we analyse how the attention weights evolve during training.

Chapter 5: Word Activation, Competition, and Recognition: The experiments con-

ducted in this chapter are directly inspired by prior psycholinguistic experiments on word

recognition in humans. Using the gating paradigm (Grosjean 1980), we analyse the neural

representations of a visually grounded speech model trained on an English data set. More

specifically, we investigate if such models are able to recognise isolated words and explore

how isolated word activation takes place. In the last part of this chapter, we investigate

if word activation and recognition takes place through a process of competition, such as

what has been postulated for human word recognition.

Chapter 6: Impact of Prior Linguistic Information: In this final chapter, we investigate

if neural models of visually grounded speech have better performances if, instead of being

given full utterances, they are given pre-segmented utterances. We investigate if this is

the case with different levels of segmentation as well as with a random segmentation.

We explore at which layers of the architecture such information should be introduced in

order to be most effective. In the last part of this chapter, we explore if using a hierar-

chical model, where several levels of segmentation are simultaneously given to the model,

improve the results, and which combination of segmentation levels proves the most effective.

Conclusion: In this last chapter we summarise the contributions of this thesis, and

suggest several future works that could be undertaken.
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1.1 Introduction

Language acquisition refers to the process by which a child learns her native language.

In order to acquire her native language, one step the child has to perform is to build a

mental lexicon (Emmorey & Fromkin 1988). A mental lexicon is a set of phonological

word-forms associated to a meaning. It also contains information about the morphology

of each form (e.g. plural formation, conjugations, etc.), syntactic information (e.g. part of

speech, valency, expected semantic roles), as well as semantic and pragmatic information

(e.g. connotation). This mental lexicon is then used by the child to parse the speech stream

and understand what is said; or later on, to build her own utterances.

However, building this mental lexicon is far from easy. Indeed, the speech stream does

not contain neatly separated words that the child would only have to assign a meaning

to. The child first has to segment the speech stream into sub-units and ultimately pair a

meaning to each of the resulting sub-units. These two processes may not necessarily occur

simultaneously, and for a time being, the mental lexicon can contain word-forms that were

not assigned any meaning yet (see Jusczyk & Aslin 1995). The meaning of each form itself

is not a ready-to-use object, but has to be inferred and constructed by the child using

perceptual information. Finally, the mental lexicon has to be structured in such a way it

can be used by the child, notably when parsing the speech stream, in order to activate the

meaning of the recognised words so as to interpret what is being said.

These basic processing steps to speech processing and comprehension that children

should acquire in order to be able to parse the speech stream correctly — and ultimately

acquire their native language — are identified by Di Cristo (2013, pp. 51-52) as segmenta-

tion, recognition and interpretation. He also adds another step, which takes place before the

segmentation step, which is decoding and which is concerned with “extracting the speech

signal from its acoustic environment and convert some of the information it contains into

linguistic representations”.

In this chapter, we will review the strategies that children use in order to parse and

segment the spoken input into sub-units (Section 1.2). We will then present several models

which account for how humans retrieve words from the mental lexicon (Secion 1.4). Finally,

we will show the tools used by the child in order to infer the meaning of a given word,

particularly focussing on how vision provides the essential tools to do so (Section 1.3).

1.2 Speech Segmentation

Speech segmentation is generally regarded as a typical example of chicken-and-egg problem.

Indeed, in order to correctly parse the speech stream, one should know what a word is, but

in order to know what a word is, one should already be able to parse the spoken input.

Nonetheless, children are able to solve this riddle, as they all manage to learn their native

language at some point. In a relatively short period of time, children are able to identify

words in the speech stream without much supervision. In the following sections, we will

review some of the cues children use in order to discover words and segment the speech

stream.

1.2.1 Speech perception

Language acquisition does not start from the moment the child is born, but rather as soon

as the foetus is able to hear, that is, when its body develops a functional proto-auditory

system at about 19 weeks of gestational age (Hepper & Shahidullah 1994). Perception of

speech evolves as the foetus grows and its auditory systems matures, enabling the brain to



1.2. Speech Segmentation 9

tune to the language environment prior to birth (May et al. 2011). As soon as 35 weeks of

gestational age, the foetus is already “capable of discriminating different sounds” (Shahidul-

lah & Hepper 1994). May et al. (2011) showed that neonates’ brain responses were different

for familiar languages and unfamiliar languages, effectively showing the foetus has learnt

a robust enough representation of the language it was exposed to prior to birth so as to

recognise it once born. DeCasper & Spence (1986) also demonstrated that newborns are

able to recognise samples of stories that were read out loud by their mother during preg-

nancy. This lets the authors suspect that “foetuses had learned and remembered something

about the acoustic cues which specified their particular target passage”. These experiments

therefore suggest that the exposure to language foetuses have is far from trivial and that

they are already accustomed to their future mother tongue.

This pre-natal exposure also develops biases the child will be able to use once born.

Hepper & Shahidullah (1994) showed that foetuses are more sensitive to low frequencies

(500 Hz and lower) than to higher frequencies. Thus, human voices “form a salient auditory

stimulus” as “the fundamental frequency of the human voice is around 225 Hz for females

and 128 Hz for males”. Newborns indeed attend more to human voices than to other acoustic

stimuli (Vouloumanos & Werker 2007).

Hence, as reported by DeCasper & Spence (1986), “newborns do not act like passive

and neutral listeners”. The newborn child should not be considered as a tabula rasa, but

is on the contrary already attuned to its mother tongue. These biases will help the child

segment the speech signal into sub-units.

1.2.2 Suprasegmental Cues

Suprasegmental cues are cues that are present in the suprasegmental features of speech

and that are used by children to discover word boundaries. Suprasegmental features are

modulations of the speech signal that may span over more than one segment (i.e. phone

or syllable). These suprasegmental features, grouped under the umbrella term or prosody,

include rhythm (tempo and pauses), intonation, and stress. As prosodic features are mainly

linked to modulation of the fundamental frequency (F0) and that children are particularly

sensitive to this frequency, they form salient cues the child can use to find words. Some

authors even state that “at the beginning was prosody” (Di Cristo 2013, p. X). Indeed,

prosody assumes many functional roles, the main one that may be of use for the infant

being its demarcation function, that groups the spoken units together and that children

can use to infer word boundaries.

The prosodic bootstrapping hypothesis — initially proposed by Lila R. Gleitman et al.

1982 — states that language acquisition is bootstrapped by the prosodic features the child

is able to perceive, both from a lexical point of view than from a syntaxtical point of view

(see Jusczyk 2000, p. 38 for a review). An evidence that prosodic features are used by

children to segment the speech stream was made by Cristia & Seidl (2011). Their study

shows that 6-month-old English-speaking infants’ prosodic sensitivity1 is a good predictor

for their productive vocabulary at 24 months. Hence, if children indeed use prosodic cues to

segment the speech stream, it appears natural that those that have the greatest sensitivity

to prosodical information manage to segment more words than the others. We will see

in the next section more precisely which prosodic cues children use in order to bootstrap

language acquisition.

1As measured, among other measures, by their preference of well-formed prosodic units over ill-formed
units.
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1.2.2.1 Rhythm

Languages may be divided into three rythmic classes depending on the unit of isochrony

used: stress in stress-timed languages (e.g. English, Dutch) where the interval between

two stressed syllables is equal, mora2 in mora-timed languages (e.g. Japanese, Tamil)

where the duration of each mora is equal, and syllables in syllable-timed languages (e.g.

French, Spanish) where the duration of each syllable is equal. The rythmic segmentation

bootstrapping hypothesis (Nazzi & Ramus 2003, Nazzi 2008) postulates that rhythm plays

a major role in language acquisition, and that the segmentation units used by children to

parse the speech stream depends on the rhythmic class their language belongs to.

A good indication that newborns are indeed sensitive to rhythmic information was made

by Nazzi et al. (1998). They showed that children are able to discriminate two languages

(English and Japanese) that belong to two different rhythmic classes but failed to distinguish

two languages if they belong to the same rhythmic class (such as English and Dutch, or

Italian and Spanish). Infants are however able to discriminate two languages belonging

to the same rhythmical class if one of them is their native language (Nazzi et al. 2000,

Bosch & Sebastián-Gallés 1997). However, when the prosodic information is manipulated

— either by shuffling the words of a sentence (Dehaene-Lambertz & Houston 1998), or by

manipulating the pitch (Chong et al. 2018) — children fail to discriminate two languages,

even if one of them is their native language. These studies thus effectively show that

infants are sensitive to the rythmic properties of their native language, which they can use

to discover word boundaries.

Cutler & Norris (1988) showed that English native adults tend to use rythmic informa-

tion such as stressed syllables as evidence for a probable word boundary.3 Jusczyk, Cutler

& Redanz (1993) investigated if English-speaking infants had a preference for trochaic

words — i.e. words that have a Strong-Weak (SW) stress pattern such as “GARden” —

and showed it was the case, hinting that they could use this information to segment the

speech signal, such as what was observed for adults. Yet, this preference was only found

for 9-month-old infants but not for 6-month-old infants suggesting such preference might

only be a result of the linguistic environment, and hence takes time to develop. In a later

study, Jusczyk, Houston & Newsome (1999) tested if 7.5-month-old children use trochaic

patterns to segment speech and “treat strong syllables as markers of word onsets”. To do

so, in a familiarisation phase, they embedded words with a Weak-Strong (WS) pattern in a

sentence (such as “[...] guiTAR is [...]” or “[...] deVIce to [...]”) and later tested if children

showed a preference for SW or WS words: “guiTAR”vs. “TARis”and“deVIce”vs. “VIceto”.

Their results indeed show that 7.5-month-old children prefer “TARis” and “VIceto”. This

demonstrates, first, that 7.5-month-old infants are sensitive to SW patterns contrary to

6-month-old infants, and second, that they segment the input so that the resulting words

have a SW pattern. Hence, 7.5-month-old English-speaking infants use stressed syllables as

evidence for word boundaries, such as what was observed for adults.

Similarly to English, Dutch is a language which has more SW-patterned words than

WS words. Houston et al. (2000) showed that 9-month-old Dutch children are able to

2 A mora is an intermediary unit between the phone and the syllable that determines the syllable’s
weight. They might be a perfect overlap between the number of moræ and the number of syllables as in
建物 (“building”) → たてもの /ta.te.mo.no/ with 4 moræ and 4 syllables; but it is most often not the case
such as in 漢字 (“kanji”) → かんじ with 2 syllables (/kan.ýi/) and 3 moræ (/ka-n-ýi/) or 東京 (“Tokyo”) →
とうきょう with 2 syllables (/to:.kjo:/) and 4 moræ (/to-o-kjo-o/). The final ん of a syllable and the long
vowel う count as single moræ.

3They do so by showing that their test subjects take longer to notice the presence of the word “mint”
in MIN-TAYVE (Strong-Strong (SS) pattern) than in MIN-tesh (Strong-Weak (SW) pattern), as in the
former, detecting “mint” supposes to reassemble word parts that the listener considered to be two different
words.
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recognise — and hence segment — words with a SW pattern from fluent speech after having

been familiarised to individual words, such as what was observed for English-speaking

infants. The same study also shows that English-speaking infants are equally successful in

segmenting SW Dutch words, suggesting they apply the SW segmenting strategy to segment

other languages than their native language.

Jusczyk, Houston & Newsome (1999) revealed that, at 10 months old, children are able

to segment both SW and WS words correctly — words such as “guiTAR” and “deVIce”

— showing that even though children initally rely on SW patterns to segment the speech

stream, they shift to other cues later on, enabling them to segment WS-patterned words.

Thiessen & Saffran (2007) further showed that English-speaking infants can be trained to

segment WS disyllabic words after an habituation phase, revealing the SW pattern only

emerges as a result of the linguistic environment, which uses more SW words than WS

words.

Nazzi et al. (2006) explored word segmentation in 8-month-old, 12-month-old, and 16-

month-old French-speaking infants to see if infants with different languages develop the

same abilities at the same age. To do so, infants were familiarised with individual units (e.g.

toucan) and in the test phase the infants had the choice to listen to two different passages:

one that contained the target word embedded in fluent speech (e.g. [...]toucan[...]) or

another one that contained another disyllabic (e.g. putois, polecat) word also embedded in

fluent speech ([...]putois[...]). If infants chose to listen more often to the passage containing

the target word, it can be concluded they recognised, and hence segmented, the target word

embedded in the passage. No evidence of segmentation was found in 8-month-old infants as

they did not favour one passage over another, while they seem to segment bisyllabic words

at 16 months, as they listened preferably to the toucan passage than the other passage.

In between, at 12 months old, infants are able to segment the final syllable of word (can

from toucan) only if they were familiarised with can beforehand, but not the whole word.

They are able to recognise the initial syllable of a bisyllabic word (tou from toucan) if and

only if it is an exact match to the word heard in the familiarisation phase (tou spliced

from toucan), but are not able to recognise toucan as a whole. This let Nazzi et al. (2006)

conclude that French-speaking infants display a systematic pattern of segmentation later

than English- or Dutch-speaking infants. The authors also conclude French-speaking infants

segment the speech stream using syllables as the basic processing unit. Nonetheless, they

also seem to be sensitive to stress as they should otherwise have been able to segment

tou without requiring an exact match. Such syllabic segmentation was also observed in

children whose native language was Castilian and/or Catalan (Bosch et al. 2013) which

also are syllable-timed languages.

As shown by Nazzi (2008) and Nazzi et al. (2006), it seems the basic computation unit

used by children to segment the speech stream depends on the rhythmic class of their

native language: English- or Dutch-speaking infants segment units based on their stress as

their language is a stressed-time language, while French-speaking infants’ segmentation is

based on syllables and not on stress patterns as their language is a syllable-timed language.

Hence, while English- or Dutch-speaking infants extract SW patterns, French-speaking

infants extract syllable-sized units.

For Japanese, it is less clear what the basic segmentation unit used by children is.

Indeed, as Japanese is a mora-time language, the rhythmic segmentation hypothesis would

imply that Japanese-speaking infants start by segmenting mora-like units. Even if it is

in fact what is observed for adults (Otake et al. 1993), recent works (Inagaki et al. 2000)

suggest that pre-literate children segmentation is part mora-based, part syllable-based; but
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as literacy increases, segmentation gradually becomes solely mora-based.4

1.2.2.2 Phonological Phrases & Utterance Boundaries

Prosody groups words together into units that are prosodically marked which are called

phonological phrases (which correspond more-or-less to syntactic-based chunks Abney 1992).

Soderstrom et al. (2005) showed that children prefer to listen to clauses that form a single

prosodic unit (e.g. “Leafy vegetables taste so good”) rather than to the same clause (in

terms of the sequence of words) that straddles over two sentences (e.g. “They must buy

leafy vegetables. Taste so good helps their families.”) and which consequently does not

constitute a phonological unit anymore. Hence, children are able to detect phonological

phrase boundaries and might use this information to infer word boundaries.

Christophe et al. (2003) showed that word recognition in 13-month-old infants is indeed

constrained by phonological phrase boundaries. Children effectively recognise a familiarised

target word (e.g. paper) if it is part of phonological phrase (e.g. “[The college] [with the

biggest paper forms] [is best]”), but not if it straddles over two phonologial phrases (e.g.

“[The butler] [with the highest pay] [performs the most]”) thus indicating that 10-month-

old infants know how to detect phonological phrase boundaries, and that a word may not

straddle two phonological phrases. Prosodical phrase boundaries may be signalled by a

pause as it is (theoretically) the only legal place where one can pause to catch one’s breath

(Di Cristo 2013, p. 15). However, most of the time, such boundaries are signalled by other

acoustic cues, such as pre-boundary vowel lengthening (Vaissière 1983) which could be a

universal cue to detect prosodical phrase boundaries, or other allophonic cues which will be

presented in the following section. Therefore, by paying attention to phonological phrases

— whose “primary purpose is to segment statements and discourse into groups of meanings”

Di Cristo (2013, p. 65) — children are able to posit word boundaries.

Another prosodic cue infants use to segment the speech stream is to pay specific attention

to utterances-edges,5 a strategy called “Edge Hypothesis”. In their study, Johnson et al.

(2014) showed that children as young as 6 months old that hear a novel word placed either

at the beginning and/or at the end of the familiarisation utterance recognised the target

word when heard in isolation, but not if this word appeared sentence medially. This shows

that infants consider utterance boundaries as evidence for word boundaries and are able to

effectively use this information afterwards.

1.2.2.3 Conclusion on Suprasegmental Cues

All in all, by paying attention to prosodic features, the child is able to posit boundaries in

the speech signal. According to Di Cristo (2013, p. 63) children’s sensitivity to rythmic cues

“[is] likely to favour the establishment of routines, which will help identify word boundaries”.

Similarly, he argues that even though the main function of prosody is not to give direct

cues to word boundaries, it gives a “metric framework” that the listener can use in order to

posit word boundaries, or at least, posit boundaries for large linguistic units such as chunks,

which necessarily correspond to word boundaries.

1.2.3 Segmental Cues

Contrary to the previous section where we presented suprasegmental cues, this section is

concerned with segmental cues, that is, cues directly linked to the segments (i.e. phone[me]s)

4As a direct consequence of using the kana writing system which is mora-based, see footnote 2. For
more details on this debate, see Kubozono (2015, §V.17.5.3)

5Which are generally prosodically marked by a falling intonation.
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of a language. As Mattys et al. (2005), we group under the term of segmental cues both

phonotatic cues and acoustico-phonetical cues.

1.2.3.1 Phonotactics

Phonotactics refers to the study of the sound sequences of a language. Some sound sequences

are said to be legal (i.e. allowed) while some are illegal (i.e. not allowed) in a given language.

What constitutes (or not) a legal sequence depends on the language, and sequences that

are legal in one language might be illegal in another language. For example, English allows

very complex sound sequences within one syllable (such as CCCVCCCC6 as in “strangles”

/stôæNglz/7) while such a sequence is not allowed in French. Moreover, some sequences

might only be allowed at certain positions, but not at others (for example, /N/ is only

allowed word-finally in French). All these constraints provide the child with potential cues

to infer word boundaries.

First, let us consider phonotactics at word level only. Jusczyk, Friederici, Wessels,

Svenkerud & Jusczyk (1993) showed that 9-month-old children preferred listening to word

lists whose words matched the phonotactic regularities of their native language than to a

word list that violated these regularities, hence showing that infants are sensitive to the

phonotactics of their language and intuitively know what sequences are legal. Jusczyk et al.

(1994) further showed that within the same language, 9-month-old children prefer a word

list that contains words with very frequent sound patterns over a list consisting of words

with infrequent sound patterns.8 Thus, by knowing which sound patterns are legal or not,

the child can immediately know if the candidate sound sequence she has isolated may or

may not constitute a word. If it does contain an illegal sequence, then it should not be

regarded as a single sequence, but should be further segmented or discarded. This is in fact

what was observed by MacKenzie et al. (2012): 12-month-old infants are able to associate

English CVCV (e.g. panu), Japanese CVCV (e.g. hashi) sequences to novel objects. They

are also able to do so with English CCVC non word (e.g. plok) but not Czech CCVC (e.g.

ptak) sequences as the /pt/ sequence is illegal as a word onset in English, while /pl/ is not.

The phonotactic regularities the child uncovers are not restricted to adjacent units, but

may also include non-adjacent units. Also, the regularities the child is able to discover is

not only limited to legal/illegal patterns but also includes frequent/infrequent phonotactic

patterns. For example, Nazzi et al. (2009) put forward a Labial-Coronal (LC) bias in

speech perception in French infants: they prefer to listen to pseudo-words in which a labial

consonant comes before a coronal consonant – LC words such as /bude/ – than the reverse

pattern, that is, CL words such as /deby/; as LC words are more frequent in French than

CL words. This bias toward LC words has been shown to also constrain word learning:

Gonzalez-Gomez et al. (2013) indeed showed that 14-month-old children are able to learn a

mapping between a novel object and a word with a LC pattern (e.g. “bat”), but are unable

to do so when the label of the word has a CL pattern (e.g. “tab”). It is only later on, at 16

months that they are able to learn both. Hence, not only children detect which phonotactic

patterns are the most frequent, but the frequent patterns condition which words are learnt

first.

Once children have enough information about the canonical shape of the individual

words of their language, they can apply this information to segment the speech stream.

Friederici & Wessels (1993) showed that 9-month-old Dutch-speaking infant could detect

6C = consonant sound, V = vowel
7Though /l/ tends to be realised syllabically [stôæ̃Ngl

"
z] or [stôæ̃Ng@lz].

8Note that both lists featured words comprising very frequent sounds. Hence, the difference can only be
explained by the frequency of the sound sequences and not the frequency of the individual sounds.



14 Chapter 1. Background on Child Lexical Acquisition

legal and illegal sound sequences in connected speech (i.e. they show a preference towards

the passage that has legal phonotactic patterns) provided certain conditions are met.9 Mat-

tys et al. (1999) showed that English-speaking infants know what sequences are legal (or

more probable) between words and within words. Infants presented with CVC·CVC10 di-

syllabic words accented with a SW pattern prefer sequences where the internal C·C is more

probable to appear within words than between words.

A real evidence that infants do use phonotactic patterns to segment speech into sub-units

was made by Mattys & Jusczyk (2001b). In their experiment they show that 9-month-old

children are able to recognise a CVC word spoken in isolation if it was previously heard

within a sentence (i.e. [...]C·CVC·C[...]) so that the phonotactic patterns provide good

indications as to where the edges of the words are (i.e. both initial and final C·C have

consonants that have a low probability to co-occur within the same word). When the word

is embedded in a sentence where the phonotactic patterns do not make this obvious (i.e.

initial and final C·C have a high probability to occur within a word), infants fail to show

preference for the target word. Children are also able to detect the target word even if it is

only the onset or the offset of the word that displays obvious phonotactic patterns signalling

a boundary. Hence, word boundaries need not be phonotactically signaled from both ends

in order to be correctly segmented.

Consequently, the child is able to detect the phonotactic regularities of its languages and

uses this information to segment the speech stream into words and evaluate if the segmented

pattern constitutes a good word candidate or not.

1.2.3.2 Vowel Harmony

Vowel harmony is found in many languages (e.g. Turkic languages, Finno-Ugric languages,

etc.) and places a hard constraint on the form of the words. It may be considered as

a special type of non-adjacent phonotactic constraint that only affects vowels within one

word. Vowel harmony consists in an assimilation by which all the vowels of a word share

a common feature (either rounded/unrounded, front/back, etc.).11 Therefore, if the child

succeeds in discovering that its mother tongue has vowel harmony, it could use such cue

to segment the spoken input. Ketrez (2013) indeed showed that when vowel harmony is

broken, it most likely signals a word boundary, and suggest that children might use this

property so infer word boundaries.

Mintz et al. (2018) showed in an artificial language learning (ALL) experiment that

children indeed segment words based on vowel harmony. 6- to 7-month-old English-speaking

infants where familiarised with the sequence pidigitokobogetepedubuku composed of four

different words: pidigi, tokobo, getepe, and dubuku12 which was repeated 45 times on a

loop. Their results show that infants indeed segmented sequences corresponding to words

(e.g. toboko) and not to part-words (e.g. bukupi, or gitoko). In a further experiment, they

observe that infants can also segment words with a more complex harmony pattern. After

hearing a sequence ditepubobidetupo consisting of four words with either front (dite or bide)

or back harmony (pubo or tupo), children in the test phrase listen longer to words (e.g. dite)

than to part-words (e.g. detu) showing the children extracted disyllabic pseudo-words based

9Most notably in their study, the spoken sample should be pronounced in a Child Directed fashion in
order to observe this phenomenon.

10The symbol ·marks a syllable boundary.
11For example, in Turkish “Türkler” (Turkish men) where “ü” /y/ and “e” /E/ are front vowels and

“Fransızlar” (Frenchmen) where “a” /A/ and “ı” /W/ are back vowels.
12Note that this is a very restrictive (and maybe facilitative) case of vowel harmony as all the vowels in

a given word are the same. Such vowel harmony, as far as we know, has never been reported in any of the
world’s languages.
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on their vowel harmony pattern. This result is coherent with other research: Hohenberger

et al. (2016) indeed showed that Turkish children as young as 6 months old prefer to listen

to harmonic words over non-harmonic words. However, it seems that in their study children

were only sensitive to the front/back harmony and not to the rounded/unrounded harmony.

All in all, these studies show that from a fairly early age, infants are sensitive to subtle

differences such as vowel harmony and are able to use this information in order to segment

the speech stream. More generally, it shows that infants are able to detect non-adjescent

regularities “where X and Y are separated by intervening, unpredictable elements – such

that listeners might be exposed to XAY, XBY, XCY – participants are able to learn that

X predicts a following Y” (Thiessen & Erickson 2015); vowel harmony being only a special

case of non-adjescent pattern. Newport & Aslin (2004), however, showed that children are

able to keep track of non-adjacent regularities at phoneme level, but not a syllable level.

1.2.3.3 Allophones & Coarticulation

Allophones are sounds that correspond to different acoustic realisations of a given phoneme.

Context usually governs the choice of one variant over another (i.e. in some cases the variant

is systematically realised). For example, English /p/ may be realised [p] (after /s/ as in

“spark”), [ph] (word-initially as in “park”), or [p^] (word-finally as in “pop music”). Hence, if

the child has learnt the rules that govern the appearance of one variant over another, it can

use this information to segment the speech stream (e.g. boundary before [ph], boundary

after [p^], etc.).

A first indication that infants are sensitive to allophonic variations was made by

Christophe et al. (1994). They showed that 3- or 4-day-old children are able to detect

a difference between a CVCV disyllabic sequence spliced from a word (e.g. /mÃta/ in

sédimentation) and the same CVCV sequence straddling over a boundary (e.g. /mÃ#ta/
in déguisement talentueux ). Therefore, they are able to differentiate two different realisa-

tions of the same phonological sequence. For English, Hohne & Jusczyk (1994) showed that

while 2-month-old English infants are able to distinguish two sequences based on allophonic

cues (e.g. “nitrate” [naIúhô
˚
eIt^] and “night rate” [naIt^ôeIt^]), it is only at 10.5 months they

are able to effectively use this information to segment the speech stream (Jusczyk, Hohne

& Bauman 1999).

Mattys & Jusczyk (2001a) showed how sensitivity to allophonic cues helps children in

segmenting words and are not simply responding to acoustic patterns. First, 8.5-month-old

children were familiarised with a set of isolated words (e.g. dice). In the test phase, infants

were presented with passages that either contain the target word (e.g. Two dice can be

rolled without difficulty.) and other passages that do not contain the target word. Results

show that children listen significantly longer to the passage containing the target word,

hence showing they did recognise the word they had only seen in isolation in connected

speech. In a similar experiment, children are once again familiarised with isolated words

(e.g. dice [daIs]). However, this time in the test phrase, infants are presented with passages

that either contain a sequence in which the target word is split over two words (e.g. d#ice

[d^PaIs] as in The rink had been sprinkled with spread ice) and two passages that do not

contain the target sequence. If infants listen longer to the passage that contains the target

sequence split over two words, it means they would have incorrectly recognised dice in weird

ice. If not, it would mean they have identified an allophonic variation that signals a word

boundary. Results confirm it is not the case, hence showing that they noticed the word

boundary in the similar sounding sequence (weird#ice). These set of experiments thus

confirm that allophonic cues are used by children in order to segment the speech stream

into words.



16 Chapter 1. Background on Child Lexical Acquisition

Coarticulation refers to the fact that a segment is never exactly pronounced the same

way given the preceding and following sounds. Indeed, sounds tend to be blended together.

Nonetheless, the “level” of blending depends on several factors. Johnson & Jusczyk (2001)

indeed note that there is “less overlap of adjacent sound segments [...] in word-final and

word-initial consonant articulations belonging to different prosodic domains”. Consequently,

if two phonemes display a low level of coarticulation, it might be they belong to two different

words. Thus, such information might help the child segment its input. Curtin et al. (2001)

showed in an ALL task that 7.5-month-old, are able to recognise isolated word-like patterns

if these isolated patterns had coherent coarticulation effects between syllables, but could not

if the syllables comprising the patterns where spliced in such a way that the coarticulation

patterns where incoherent. This thus shows that children encode coarticulation information

when remembering a new word and re-use this information later on to recognise words in

the speech stream.

1.2.3.4 Transitional Probabilities

Children may also use statistics in order to decide if there is a word boundary between two

adjacent syllables or not. If two syllables frequently co-occur, it seems reasonable to treat

them as belonging to a single unit than to two different units.

In an ALL task, Saffran et al. (1996) tested if 8-month-old infants were sensitive to

statistical (ir)regularities, and more specifically transitional probabilities (TP)13 in order to

segment the speech stream into words. To do so, they assembled a set of four artificial words

(pabiku, tibudo, golatu, and daropi) so that the whole sequence would be two minutes long.

The sequence was synthesised so that only statistical cues might be used (i.e. monotone

voice, no stress, no pause, etc.). Because the words were repeated in a random order, the

TP between two syllables of the same word is always 1 (e.g. bi is always followed by ku)

while the TP of two syllables belonging to different words is 0.25 (e.g. ku might be either

followed by ti [budo], go[latu], da[ropi] or pa[biku]). Hence, if children are indeed sensitive

to the transitional probabilities of the syllables, they should consider the aforementioned

words as valid units, but not tudaro, pigola, etc. It is in fact what the authors observe,

letting them conclude that children do use transitional probabilities between syllables as a

cue for word segmentation.

Even though the previous experiment does show that children are able to use TP to

segment speech in a relatively short time, the input does not reflect the actual difficulty

of real life language. Pelucchi et al. (2009b) hence tested if 8-month-old English-speaking

infants were able to segment speech based on TP when presented with Italian words (e.g.

fuga, getaway) embedded in grammatically and idiomatically correct Italian sentences. The

sentences were constructed in such a way that the TP between fu and ga was always 1

(i.e. there were no other occurrences of the syllable fu except in the word fuga). Another

real Italian word was used in the sentences (bici, bike), however this time the syllables bi

was also used to construct other words (bira, bigia, bivio, etc.); hence, the TP between bi

and ci is lower than 1.14 At test time, if children indeed used TP to segment speech into

sub-units, they should consider fuga as a real unit while bici should be discarded. It is in

fact what is experimentally observed, therefore suggesting that using TP is not only used

by children in ALL task, but also when confronted to real speech.

Not only are children able to keep track of forward transition probabilities (FTP), but

13Probability that the next syllable is Y given the fact that the current syllable is X is given by TP =
P (Y |X) = freq.XY

freq.X
.

14Such as in this sentence: “La cavia Bida è in fuga da casa per aver giocato con le bilie blu”. (The guinea
pig Bida is on the run from home for playing with the blue balls)
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research suggest they can also keep track of backward transition probabilities (BTP).15 To

study this, Pelucchi et al. (2009a) embedded four target words into sentences in Italian (such

as Pelucchi et al. 2009b): fuga, melo, bici, and casa. In all cases, FTP(Y|X) = P(ga|fu) =

P(lo|me) = P(ci |bi) = P(sa|ca) = 1 (i.e. no other words than the target words start by

fu, me, bi, or ca). However, BTP probability was different for half of the words: in one

case BTP(X|Y) = P(fu|ga) = P(me|lo) = 1 (i.e. no other words than fuga or melo have

the final syllable ga or lo), while in the other case BTP(X|Y) = P(bi |ci) = P(ca|sa) < 1

(i.e. other words than bici and casa end with ci or sa). If infants also pay attention to

BTP, they should consider fuga and melo as better word candidates than bici and casa,

as the former have both FTP and BTP = 1, while the latter have a BTP < 1. It is what

is observed experimentally, letting the author conclude that infants do keep track of both

FTP and BTP, and that such knowledge is used for multiple tasks, one of them being word

segmentation.

Estes et al. (2007) showed that children may segment a continuous speech stream into

words using TP without necessarily immediately assigning a meaning to the segmented

units. First, 17-month-old children were exposed to an artificial language of four words

(e.g. timay#dobu#gapi#moku) for which the only cues for word segmentation were TP.

Then, the infants had to learn a mapping between a novel object and a novel word that

was either one of the words used to build the initial sound sequence (e.g. timay), or a

novel word that did not occur in the sequence (e.g. nomay), or a part word that was

made up of two word parts (e.g. pimo). The only children that managed learning a novel

word-object mapping were those for which the novel word was one used to construct the

sequence. Hence, the authors conclude that not only children used TP to segment the speech

stream, but that prior exposure to word facilitates subsequent word-referent mapping. This

result is coherent with previous results: Jusczyk & Aslin (1995) indeed showed the child’s

proto-lexicon might also only contain word-forms that are not associated to any meaning

at first.

1.2.4 Lexical Cues

Children may use lexical cues in order to parse the spoken input and segment it. Indeed, as

soon as the child has isolated a certain number of word-forms, she can use them in order to

isolate the words that precedes and/or follows the known word. White et al. (2010) coined

the term “segmentation by lexical subtraction” and defines it as “the use lexical knowledge

to impose a segmentation structure on the speech input”.16

Jusczyk & Aslin (1995) showed that 6-month-old children are able to detect known

words in the speech stream if they already heard the same word in isolation. Further

study by Jusczyk & Hohne (1997) observe that infants are able to remember words for

relatively long time spans (as long as two weeks in their study). Thus, isolated words may

be used by children to segment the speech stream. Brent & Siskind (2001) estimate that

9% of infant directed speech are isolated words. Bortfeld et al. (2005) later showed that

6-month-old infants already used familiar words (“mommy”, “daddy”, or the child’s own

name) to segment the following word in the speech stream. Indeed, as soon as the familiar

word is recognised, its end necessarily constitutes the beginning of the next word. Bortfeld

et al. (2005) state (without experimentally testing) that the familiar words might not be

15Probability that the previous syllable is X given the fact that the current syllable is Y is given by
BTP = P (X|Y ) = freq.XY

freq.Y
.

16This term, originally introduced in the aforementioned publication, did not refer to child language
acquisition (the original study explored the segmentation strategies used by Hungarian that are L2 speakers
of English). However, we do believe that this term also applies to child language acquisition as it adequately
describes the method used by children to segment the spoken input.
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restricted to those already mentioned, but might also include other familiar words such as

“diaper” or “bottle” that are part of the child’s everyday life. Bergelson & Swingley (2012)

later showed that other common words known by children included words refering to body

parts (“feet”, “hands”, “mouth”, or“eyes”) or refering to food (“yogurt”, “banana”, or“milk”).

Hence, all these words might serve as support for the child to segment the speech stream

into sub-units.

Other types of words such as functional words (i.e. closed-class words such as determin-

ers, conjunctions, prepositions, etc.) are also used by the child to segment the speech stream.

For example, Shi et al. (2006) showed that the determiner “the” facilitates the recognitions

of a test pseudo-word while non-sense words (“kuh” and “ler”) or a least frequent deter-

miner (“her”) do not. A similar effect was found for 8-month-old French-speaking infants

by Shi & Lepage (2008) where infants better recognised a novel target word in isolation if it

was heard during the familiarisation phase either with a highly frequent determiner before

(“des”) or less frequent determiner (“mes”), but not if it was presented with a non-sense

similar-sounding word (“kes”). They however note that this effect is not observed with

all determiners as they do not observe any difference when the target word is presented

with “vos” or with “kos”, thus showing that in order to be used, the determiners should be

frequent. Höhle et al. (2004) found a similar behaviour for 14-month-old German infants.

Finally, Haryu & Kajikawa (2016) ran a similar analysis on Japanese and the use of parti-

cles by children. Contrary to Indo-European languages, particles are postpositions and are

used to indicate the function of the preceding word (subject, object, etc.). They found that

15-month-old Japanese toddlers use particles, and more specifically the “ga” particle which

is the subject particle, in order to segment speech. Thus, the pattern of using functional

words as cues for word segmentation seems to be valid cross-linguistically.

Finally, Johnson et al. (2014) report in their study that interjections (such as “oh”, “no”,

“wow”) account for 80% of the words heard in isolation in child directed speech. Such

words, that do not serve any grammatical function but act merely as phatic and conative

interjections (Ameka 1999), might help the child segment the speech stream.

Therefore, children use the lexical knowledge they have to parse the speech stream and

acquire novel word. However, as noted by Curtin & Hufnagle (2009), “familiar words are not

enough for infants to excel at segmentation”. Indeed, in order to fully segment the speech

stream, the child should develop other routines such as those already discussed thereafter.

1.2.5 Other cues

Another cue that children could use in order to infer the lexicon of their language derives

from the nature of the spoken input they hear. Indeed, Child Directed Speech (CDS)17 has

certain properties (at various levels: acoustics, syntax, etc.) which are not found in Adult

Directed Speech (ADS). Fernald et al. (1989) reports for example that both mothers and

fathers have a higher fundamental frequency (F0) with exaggerated pitch contours and long

pauses between utterances. CDS is also reported to have a slower rate (syllable/seconds).

Nevertheless, Church et al. (2005) reports that this is to be explained by the elongated pre-

boundary final vowel lengthening that is greater in CDS than in ADS. If this final syllable

is excluded in the speech rate calculation, CDS and ADS speech rates are similar. Johnson

et al. (2014) also reports a higher proportion of isolated words in infant-directed speech

(IDS, up to 90-days-old infants) than in CDS (i.e. from 90 day old up to 2.5 years old) and

the proportion decreases again in ADS. Their study also reveals that nouns are more likely

to appear at utterance-edges in IDS than in CDS or ADS.

17Also known as motherese, parentese, baby talk, etc.
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It should be noted that IDS/CDS is not universal, as in some cultures children are not

(or barely) addressed to until they are able to speak (Cristia et al. 2019) or are addressed to

like adults. Thus, this type of speech is not mandatory for children to learn their language,

but seems to help the child when it is used.

Nelson et al. (1989) indeed showed that 8-month-old infants prefer listening to speech

excerpts in CDS that preserved clausal boundaries over excerpt in CDS that do not preserve

clausal boundaries. They showed no such preference for ADS, whether clausal boundaries

where respected are not. Infants thus seem to be able to better detect what a legal prosodical

unit is when CDS was used but not when ADS was used. Therefore, CDS seem to provide

useful cues to the child in order to segment the spoken input, at least at clausal level.

Thiessen et al. (2005) further tested in a ALL task if CDS was easier to segment for 7.5-

month-old infants than ADS. To do so, they had infants listen to a sequence of words (dibo,

kuda, lagoti, nifopa) whose only cue to word boundaries was the probability of co-occurence

of each syllable.18 The sentences were read both as CDS and ADS by the same speaker.

In the test phase, children payed more attention to well-formed word (e.g. lagoti) than

to part-words (i.e. gotini or dalago) when having been familiarised with CDS, but show

no difference when familiarised with ADS. Hence, the authors conclude that CDS indeed

improves word segmentation for young children.

Ma et al. (2011) explored if CDS facilitated word learning compared to ADS. In their

experiment, 21-month-old children were presented with novel objects (displayed on a screen)

and were told the name of the novel object in a familiarisation passage (e.g. modi in the

passage “Look here! It’s a modi ! See the modi. That’s the modi [...]” ) either in CDS

or ADS. During the test phase, Ma et al. (2011) checked if the children looked longer to

the object that was presented as a modi than to the distractor object when hearing the

sentence “Modi. Where’s the modi”. Children that were familiarised with a CDS passage

showed such a pattern, but not those that were familiarised with the ADS passage.

Hence, this body of work suggests that, even though CDS is not found in every culture,

it enhances the ability of children to extract words from the speech stream. Di Cristo (2013,

pp. 172-173) indeed states “the repetitive use of lexical stress in the speech addressed to

the child helps to fix the child’s attention and at the same time helps the child to identify

word boundaries”. Not only IDS/CDS help children identify word boundaries, they also

help them map the extracted word-form to their referents. For Di Cristo (2013, p. 175),

it may be because “the effect of the accentual function is to emphasise the element that is

the subject of this prosodic distinction [... making] it possible to establish a link between a

phenomenon of physical or perceptual salience and the promotion of a mental or cognitive

salience.”

1.2.6 Multiple Cues: from Mutual Exclusion to Combination

The previous sections presented the numerous cues children may use to segment the speech

stream. Yet, not all cues are available nor used at the same time. Some cues are only

available from a certain age, such as phonotactic cues as they require some amount of

exposure to the target language, while some are available since the child was born, such as

the ability to detect allophones. Similarly, even if multiple cues may be used at the same

time, research shows that children might favour some cues over others at a certain point of

their development.

Johnson & Jusczyk (2001) tested in an ALL task if 8-month-old infants relied more on

coarticulation or statistical cues to decide whether there was a boundary or not. The same

18The syllables mo and fa was added respectively at the beginning and the end of the sequence so that
the sequence beginning or end would not be used as a cue
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sequence of words as Saffran et al. (1996) was used (...pabiku#tibudo#golatu#daropi...,

see §1.2.3.4) unless this time, instead of splicing a part-word (e.g. ku#tibu) from the

original sequence, it was resynthetised. Contrary to the previous experiments of Saffran

et al. (1996), the new part-word had a coherent coarticulation pattern at word boundary

— or what should theoretically be considered a word boundary from statistics alone (i.e.

between ku and ti). Hence, according to the coarticulation pattern, there should not be a

word boundary while according to statistical cues there should be. If children favour the

part-word this time, it means that they discarded the TP information and only considered

the acoustic cues. They results show that infants consider ku#tibu as a valid word and

hence favoured coarticulation information over statistical information.

Mattys et al. (1999) similarly showed that when phonotactic cues and prosodic cues

provide conflicting information about the word boundary, 9-month-old infants only rely on

the information provided by the prosodic cues. They favour a disyllabic CVC·CVC SW

sequence with a frequent between-word C·C internal cluster over a disyllabic WS sequence

with frequent within-word C·C internal cluster. Hence, more weight is given to prosodic

cues than to phonotactic cues.

Jusczyk, Houston & Newsome (1999) revealed that while 7.5-month-old children are un-

able to segment WS words, 10-month-old children are able to do so. They cannot therefore

do it using SW pattern as a cue, as the word that is extracted does not have this accentua-

tion pattern. Consequently, at some point, infants need to discard the information provided

by the primary (i.e. first used) cues and integrate other cues to segment the speech stream.

Such pressure could arise from what is known as the Possible Word Constraint (PWC, see

Norris et al. 1997) which states that segmentation should leave a low number of un-analysed

chunks (ideally none) and that the chunks resulting from the segmentation process should

be existing words. Johnson (2003) showed that segmentation in 12-month-old infants is

indeed conditioned by such PWC. Hence, in the “guiTAR is” experiment, the segmenta-

tion that conforms the best to the PWC is “guiTAR#is” despite the WS pattern and not

“gui#TARis” as the latter leaves a non attested word “gui”.

Finally, segmentation cues may also be used in conjunction rather than in isolation.

There are infinitely many ways of segmenting a speech signal into sub-units, but the multiple

cues children have access to constrain the possible segmentations. Indeed, “constraints

should make a ‘combinatorial explosion’ less likely.” (Thiessen & Erickson 2009, p. 44).

In the previously described experiments of Pelucchi et al. (2009b,a), where children

found disyllabic words embedded in fluent Italian sentences, the Italian speaker was asked

to read the sentences with a “lively voice, pretending to be in front of a baby”. Hence, it

might also be the combined effect of TP and CDS that helped children segment the spoken

input, and not TP alone.

The use of TP to segment the speech stream also seems effective when combined with

another cue. Johnson & Tyler (2010) showed that 5.5- and 8-month-old children do manage

to extract words from the speech stream using TP if the words are uniform in length.

However, when the words are not uniform in length (three-syllable and two-syllable long),

infants do not seem to be able to segment the speech stream correctly. Therefore, this

suggests that in order to be used effectively, TP should be combined with other cues, as

real life language has words with a different number of syllables.

A similar result as Johnson & Tyler (2010) was observed by Mersad & Nazzi (2012).

In their experiments, they tested if 8-month-old French-speaking infants could segment an

artificial language consisting of words of non uniform length (e.g. respectively bisyllabic

words pabi, tibu, and mãma and trisyllabic words golatu, daropi) where TP were the only

cues to properly segment the speech stream. As in Johnson & Tyler (2010), French infants

were not able to segment the speech stream into words. Yet, when the pseudo word mãma
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was replaced with mamã (“mum”), the infants succeeded in segmenting the speech stream,

even if it consists of non-uniform words. Consequently, the authors suggest that children

were able to segment the speech stream using these two cues in conjunction. Indeed, if TP

alone had been enough, the infants should have managed to segment the speech stream

in the mãma condition, which is not the case. The authors thus suggest that infants first

perform a segmentation by lexical subtraction (see Section 1.2.4) — therefore discovering

also the beginning and end of the other words — and then used TP to segment the rest:

with the help of these two cues, the child managed to segment the speech stream, when if

only one cue or the other had been present, the child would not have been able to do so.

1.2.7 Conclusion on Speech Segmentation

In this section, we presented the multiple cues children use in order to segment the speech

stream. We showed that children are sensitive to suprasegmental cues (e.g. prosody),

segmental cues (e.g. phonotactics), and subsegmental cues (e.g. coarticulation). Once

segments have been isolated, they can then use statistical cues (e.g. TP) to further segment

the speech stream. Additionally, we showed that children also make use of isolated words in

order to segment the speech stream (segmentation by lexical subtraction) and we highlighted

the benefits of using CDS over ADS.

It thus appears that children use a combination of top-down (e.g. isolated words) and

bottom-up cues (e.g. phonotactics, TP, etc.) in order to segment the speech stream. Both

approaches are necessary — as, for example, discovering the regular phonotactic patterns

within words requires the knowledge of a set of individual words — and complementary

— as in return, the inferred phonotactic patterns enable the learner to segment even more

words.

We will conclude this section by introducing the Hierarchical Framework by Mattys

et al. (2005) which shows how the various cues we presented are organised in a mature

segmentation system (Figure 1.1). As can be seen, the cues that are the most important

are lexical cues. That is, lexicality places such a hard constraint on word segmentation

(with the Possible Word Constraint), that it is the cue that is used primarily by adults to

segment the speech stream. If, for some reason, the lexical level is not directly accessible,

when for example the speech signal is noisy, then adults fall back on non-lexical cues to

parse the speech stream (segmental cues, word stress).

Contrary to adults, speech segmentation in children is a developing system, and seems to

be bootstrapped by the cues that adults tend to use the less favourably (i.e. prosodic cues).

However, we believe that this diagram should also include an arrow at the top, as we have

seen that children also hear a significant proportion of words in isolation (up to 9% such

as mommy, bottle, etc.) and even more if interjections are counted.19 Johnson et al. (2014)

reports that 29% of the words in CDS are interjections and 80% of the words pronounced

in isolation are interjections. These words are extremely frequent and can be used by

the child to bootstrap speech segmentation. Hence, speech segmentation in a developping

system uses, as in a mature system, both top-down and bottom-up cues, the only difference

being the relative importance given to each approach. Given the little vocabulary children

have, bottom-up cues are used more favorably than top-down cues.

This review allowed us to observe the different strategies used by children to segment

the spoken input into sub-units. We will explore in this thesis if a neural model of visually

grounded speech also segments its input into subunits as children do.

19They are usually discarded in the statistics of IDS/CDS speech corpora.
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Figure 1.1: Figure taken from Mattys & Bortfeld (2015) presenting the cues used in a mature

speech segmentation (i.e. adult) system and in a developing system (i.e. child) with the black

arrows illustrating the back and forth interactions between top-level cues (semantics, lexical)

and low-level cues (prosody). The grey triangle indicates the importance of each set of cues

(with the wider end signalling the greater importance of such cues).

1.3 Word Mapping

In the previous sections, we presented the cues children use to segment the speech signal

into sub-units. However, we somehow considered language in vacuo as if words existed per

se, disconnected from any context. This is of course not the case:

The important point in all this is that language only has existence with respect to

the physical and mental order of things. Language is not any sort of independent

system, to be tapped into as required. Aspect of language have significance only

as they relate to aspects of the world. (Dixon 2012, p. 434)

This point, though obvious, should be mentioned as the NLP community often tends to

consider language as having an existence of its own, disconnected from the real world. We

will further discuss this point in the following chapter (see Section 2.1.3).

In this section, we highlight how children assign a meaning to the extracted word-forms

they have isolated in the speech signal, and show why context is necessary to acquire a

language. Recent research show, that the more often a word is heard in different contexts,

the better it is learnt by the child (Roy et al. 2015). Hence, contextual information plays a

decisive role in lexical acquisition. We will mainly focus on the visual modality, as it is the

modality that is used by our model, and show how it influences language acquisition.

1.3.1 Prerequisites

Once children have isolated a certain number of word-forms, they should assign them a

meaning. Meaning is not a ready-to-be-used object that the child would only have to map

to a given word-form; but rather should be constructed by the child on the basis of its

experience with the physical world.

Hence, assigning each word-form a meaning is only the last step. The first step consists

in finding the referent of each word-form. Finding the right referent can only be done in

context, as a given word-form relates to a given object in the physical world, or a given
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percept. Potentially, the referent may change from one occurence of a word-form to another.

For example, the word-form “dog” might be uttered when refering to different dogs, each

one being a referent of the word-form “dog” when it was uttered. Once the child has infered

the referents of a given word-form, it should find the commonalities shared by the referents

in order to abstract a potential meaning.

However, finding which is the referent of a word-form is far from an easy task. Indeed,

there are an infinite number of possibilities the child has to choose from (see Quine’s famous

gavagai example, Quine 1964). The problem is even trickier if one thinks of abstract

words such as pride, or love for which the referent is not perceptible and refers to inner

sensations. A purely associanistic approach, where word-form/referent co-occurence alone

would solve the problem, seems unrealistic. Indeed, if word learning were only done using

cross-situational statistics, then children would necessary have to hear a word several times

in order to learn it, which is not what is observed in practice. Indeed, children are able to

do fast-mapping (Carey & Bartlett 1978), that is, learn to quickly map a word-form to its

referent and derive a meaning with a very few number of examples (in some cases only one

example). This led researchers such as Bloom to argue that “statistical covariation between

word and percept is neither necessary nor sufficient for word learning.” (Bloom 2002, p.

59). Therefore, word/referent mapping and ultimately the acquisition of meaning seems to

require something more.

1.3.2 Theory of Mind and Shared Attention

For Tomasello (2009, p.3), acquiring a language involves two skills: pattern-finding, and

intention reading. Pattern-finding involves all the statistical computations the child makes

in order to segment the speech stream, as well as recurrent sequence detection and extrac-

tion in the speech stream (which we presented in the past sections). Intention reading is,

according to Tomasello, the necessary ingredient for children to acquire their language, and

particularly when it comes to inferring what is the referent of a given word-form.

Bloom (2002) similarly argues that“children use their naive psychology or theory of mind

to figure out what people are referring to when they use words”. Theory of mind could be

defined as the capacity humans have to infer the mental states of others and relate them

with their own. This allows them to interpret and understand the emotions, intentions,

beliefs, and behaviours people around them have (Astington & Dack 2008). Specifically for

language, having a theory of mind is necessary to appropriately contextualise what is said.

Hence, Bloom argues that children are able to do fast-mapping only because they have a

theory of mind.

Having a theory of mind enables children to enter in shared attention frames (also called

joint attention frames). A shared attention frame may be defined as “a triadic episode of

interaction involving a caregiver, an infant/toddler and an object” (Rudd & Johnson 2011).

To be more precise, there is shared attention when both the child and the caregiver are

attending to the same object, while being mutually aware of what the other is attending to

(see Figure 1.2).

According to (Bloom 2002, p. 46), if having a theory of mind is a necessary prerequisite

for building a lexicon, there should be a correlation between the onset of word learning

and the first evidence of the child having a theory of mind. Morales et al. (1998, cited

by Bloom 2002) observe that in six-month-old infants, the ability to follow the caregiver’s

gaze — and hence initiate a shared attention state — is a good predictor of their receptive

vocabulary at 12 months. This result is coherent with previous findings: Tomasello & Todd

(1983) for example observed that infants that have long periods of shared attention with

their caregiver at 6 months have overall a larger perceptive vocabulary than those for which
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Figure 1.2: Illustration of shared attention between a caregiver (top left) and a toddler (top

right), attending to the same objet, a chicken (bottom).

shared attention moments are infrequent. Moore et al. (1999) showed that shared attention

was a cue that outweighted saliency when 24-month-old children learn a new word. That

is, children are better able to learn a novel word if this word was part of a shared attention

frame, even if it was not visually salient. On the contrary, children did not learn words

when the object was not part of a shared attention frame. Hence, having a theory of mind,

and being able to enter in shared attention frames seems crucial for lexical acquisition.

1.3.3 Assumption and Biases

Children’s ability to assign a meaning to a word-form seems to obey a certain number of

assumptions and biases. Markman (1990) lists several biases children seem to have when

acquiring novel words: the whole object assumption, the taxonomic assumption, and the

mutual exclusivity assumptions.

The whole object assumption states that children treat word labels as refering to an

object as whole (e.g. a tree) and not a sub-part of it (e.g. trunk, leaf, branch). Hollich

et al. (2007) recently gathered evidence in favour of this hypothesis. When 12 and 19-

month-old children are presented with novel objects with detachable parts, they associate

the novel word to the whole object rather to one or the other detachable part. The taxonimic

assumption states that the usage of novel words is extended to similar objects, that is,

object with similar characteritics (e.g. dog label for a German Shepherd and a Bulldog),

and not to objects thematically related (e.g. dog and leash) (see Markman & Hutchinson

1984). Finally, the mutual exclusivity assumption states there is a bijection between a word-

form and its referents: that is, for a given label there is only one associated (conceptual)

referent (e.g. /dOg/ for dogs), and a single referent can only be referred to by a single

label. According to Markman (1990), this assumption balances the previously presented

assumptions. Indeed, children necessarily have to acquire meaning for object parts and

other properties of objects (e.g. color, texture, etc.). Such constraint would thus “lead

them to analyze the object for some other property to label”, and more generally, analyse

in greater depth the world around them in the search for new referents.

Other constraints were postulated, such as the principle of constrast and the principle of

conventionality (Clark 1987). The principle of constrast says that “every two [word] forms

constrast in meaning”. That is, the child would consider that no two word-forms are exact

synonyms. Such principle would also encourage the child to explore its environment so as to

find a possible referent. The principle of conventionality states that “for certain meanings,

there is a conventional form that speakers expect to be used in the language community”.

That is, children should expect stability in the linguistic system they are learning, and
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hence that word-forms are regularly associated to a given meaning. This is also what is

expected with the mutual exclusitivity assumption.

1.3.4 Mismappings

Even though lexical acquisition seems to be guided by a certain number of biases, children

often make mistakes. When they fail to correctly map a word-form to its referent, they

usually overextend its usage (e.g. dog for every furry animal with four legs) or underextend

it (e.g. dog for German Shepherds only). Even though over- and underextensions are most

appearant in production as a suppletive mechanism to refer to something the child does not

know the word for yet (Clark 1978), they also occur in perception (Behrend 1988). Rescorla

(1980) provides a typology of the main causes of overextensions: categorical overinclusions

where a label is used for a referent close to the real referent (e.g. baby for children), analogical

overextensions where a label is used for a referent which bears a similarity with the true

referent (e.g. ball for marbles or apples), and predicate statements which are holophrastic

(e.g. dog when pointing at a basket to show the dog is not here). Rescorla (1980) estimates

that one third of the child’s first words are overextended, and about three quarters of the

extentions being either categorical overinclusions or analogical overextensions, most of them

being done on the basis of “perceptual similarity” (as opposed to functional similarity).

Regarding overextensions, most of them seem to be explainable by a shape-bias (Lan-

dau et al. 1988); that is, most words are overextended based on the global shape of their

referent (e.g. dog for any four-legged animal). Even though most authors state that chil-

dren overextend words based on “perceptual” features (i.e. shape, size, texture), in most

experiments, the visual modality is usually the only modality available to the subjects.20

Nonetheless, this seems reasonable to some extent, as “[s]hapes of certain things (those too

large, distant, or gossamer to explore by hand, such as mountains, birds, and fog) are visible

only in practice” (Landau & Gleitman 1985, p. 13).

Hence word acquisition and world perception seem to evolve jointly: first, word-forms

are rudimentarily associated to referents, and second, the aforementioned assumptions and

principles encourage the learner to further analyse its environement, so as to discover new

referents that can be associated to new word-forms. Association between a word-form and

its referent is done on the account of perceptual characteristics, for which vision seems to

play a major role.

1.3.5 Visual Modality

In order to map the segmented word-forms to their referent, vision plays a central role.

Indeed, “it is largely vision that directs the infant’s attention to persons, objects and events;

vision is important for the co-ordination of attention between parent and child; and it often

constrains (especially in Anglo-American culture) the content of language addressed to the

child” (Andersen et al. 1993). Vision hence provides the necessary interpretative context,

which is necessary to get “language learning off the ground floor” (Landau & Gleitman

1985) and seems to be the modality used the most by children in order to map word-forms

to their referent (this will be discussed more extensively in the following section 1.3.5.2).

20From Landau et al. (1988): “subjects were shown a single standard (i.e. the Dax) and told its name
(“This is a Dax”). The standard remained in view throughout the entire procedure. Subjects were then
shown the seven test objects one by one” Emphasis added.
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1.3.5.1 Word Mapping and Vision

It seems that infants’ ability to systematically associate a visual referent to a word-form

only appears at around 12 months of age. Thiessen (2010) tested adults and 8-month-old

infants on their ability to segment words from fluent speech, and associate the target word

with a visual referent. During the familiarisation phase, an image depicting the target word

appeared on a screen at the same time the word was uttered, and disappeared from the

screen once the word’s offset was reached. Therefore, in this experiment there is a regular

association between the boundaries of the target word and its visual appearance, which

should facilitate both segmentation and mapping. The author observes that while adults

do benefit from the synchronicty between both modalities, 8-month-old children do not.

This result is in line with previous results, Werker et al. (1998) indeed showed that 8- to

12-month-old infants are not able to learn word-object pairing. They however found that

13- or 14-month-old infants are able to do so.

Friedrich (2008) made similiar observations by studying the event-related brain potential

of children between 12 and 19 months. The subjects were primed with a visual stimulus

which was followed by either its matching audio word-form (e.g. “cat” for the picture of a

cat) or a mismatching one (e.g. “dog” for the picture of a cat) and observed if there is a

N400 priming effect. The N400 potential is linked to semantic processing in the brain. The

expectation is that if the two modalities match (e.g. “cat” with cat) then an N400 effect

should be observed, and no effect should be observed if the modalities do not match. While

the N400 effect was observed for infants from 14 months on, it was not for 12-month-old

infants, showing they did not seem to map the word-form to its visual referent.

Smith & Yu (2008) tested if 12- and 14-month-old children are able to quickly acquire

the meaning of a novel word and effectively resolve the ambiguities that might arise if several

referents are possible by simply using cross-situational statistics. To test this, they present

two novel objects to infants, each paired with a novel noun (e.g. a picture of a ball and a

baseball bat, paired with their respective name). Hence, the child is unable at this stage to

tell which object is paired with which noun. Nonetheless, by seeing other occurences of one

of the two objects paired with another noun (e.g. picture of a ball and a dog, paired with

their respective name), the child is able to learn the correct word-object mapping. While

this is not suprising for 14-month-old infants, Smith & Yu (2008) also found it was the case

for 12-month-old infants, which seems contradictory with the result of Friedrich (2008) and

Werker et al. (1998). However, as this ability seems to develop in a very short time frame

(between the 12th and 13th month of age), it is reasonable to observe slight differences from

an experiment to another, especially if the experimental settings are different.

Vouloumanos & Werker (2009) tested if 18-month-old infants are able to map a word-

form to its referent when a given word-form is not always uttered at the time its referent is

simultaneously perceptible. Their study reveal that children are able to map the word-form

to its referent, even if the word-form is used in contexts where the referent is not perceptible.

It shows that children are able to maintain several hypotheses of the meaning associated to

a given word-form, and seem to select the most frequent one.

The visual modality and the intention reading skills of infants are combined so as to

make sense of what is said. Goldin-Meadow (2009) argues that “referring to an object in

gesture could facilitate learning the word for that object in toddlers at the early stages of

language learning” as the referent of a given word-form would be unambiguously signaled

to the child. Similarly, being able to interpret other gestures, and more specifically gaze

direction helps children learning novel words, by noticing what the caregiver is looking at

(Law et al. 2012). Computational simulations (Smith & Yu 2008, Frank et al. 2009) find

that word learning by cross-situational statistics is significativelly enhanced by speakers’
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intention information.

1.3.5.2 Language Acquisition and Blindness

Even though vision seems to be the most prominent sense children would use to learn a

language, lexical acquisition is still possible when vision is lacking: indeed, blind people

are as proficient in their native language as sighted native speakers.21 However, being

congenitally blind might slightly slow the learning process and affect the quality of what

is being learnt — mainly phonetics and semantics — at least in the early stages. We will

thus review in this section what is known of language acquisition in blind children. This

will enable us to better understand what role vision plays in sighted children when they

acquire their native language.

Most authors observe a tendency in blind children to talk about past events instead of

the “here and now”. This tendency to favour past events over what is occurring in the “here

and now” is to be explained by an absence of obvious shared attention between the child

and the caregiver. Such absence of shared attention is mainly explained by an inability

of the caregiver to interpret what the child does and an inability to understand what the

child is interested in (Andersen et al. 1993). By focusing on past events, the child tries

to recreate a situation where she knows the caregiver and herself have shared a common

experience they can talk about.22

Research has also shown that blind children also suffer from a lack of decentration,23

that is, they fail to consider anything else other than themselves and their immediate

surroundings. Thus, the main topics that are initiated by blind children refer to action

or states involving the child herself (see Andersen et al. 1984 and Peltzer-Karpf 1994, p.

41) and not to the outside world. It is easily understandable why blind children do so,

as it is impossible for them to discuss or get interested in persons or objetcs that are not

directly noticeable (either by touch, hearing, or smell) contrary to sighted children who can

get interested in objects that are not in their immediate surroundings. Consequently, by

being deprived of sight, blind children can only initiate interactions that involve persons or

objects that are in their immediate surrounding. Unsurprisingly, blind children mainly rely

on haptic input (i.e. touch) to compensate for the lack of visual input (see Dunlea 1989, p.

160; or Peltzer-Karpf 1994, p. 58), but it can only compensate for so much.

Consequently, this lack of decentration generates interactions with the caregivers that

are different from the interactions the same caregiver would have with sighted children. As

caregivers usually fail to interact properly with blind children — at least at a very early

stage — the nature of the conversations are affected. For example, Andersen et al. (1993)

reports that caregivers repeatedly “bombard” the child with labels instead of providing a

description of their environment as they would usually do. She also reports that caregivers

tend to be more directive so as to encourage children to explore their environment. She

finally notes that caregivers tend to “restrict their verbal input”.

Naturally, both the child’s comprehension and production is affected by the nature of

the interactions. Andersen et al. (1984) reports in her study that deictic terms were only

21Blind people also make the same conceptual differences as sighted people for verbs such as “look” and
“see”, the only difference in the way of looking or seeing being the modality. See Landau & Gleitman (1985).

22“Talking about shared past events allows the blind children to maximize the probability that they and
their addressees have a common focus of attention, just as the use of visual cues aids sighted children in
talking about the here and now.” (Dunlea 1989, p. 157).

23“The gradual progression of a child away from egocentrism toward a reality shared with others. [...]
It can also be extended to the ability to consider many aspects of a situation, problem, or object, as
reflected, for example, in the child’s grasp of the concept of conservation.” in https://dictionary.apa.

org/decentration consulted on 16/11/2020.

https://dictionary.apa.org/decentration
https://dictionary.apa.org/decentration
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used by sighted children and not by blind children. On the other side, Peltzer-Karpf (1994)

note that blind children tend to use twice as much interrogative pronouns as sighted children

which seems natural as it is the only way for them to explore the world.24

Blindness also seems to affect the generalisation capacities of the child. Indeed, the

learning paradigm in sighted children and blind children is different. As noted by Dunlea

(1989, p.10 ) “the act of touching and feeling is a search for information; it implies a

conscious effort to obtain sensory stimulation” while sighted children do not need to do a

conscious effort in order to interpret and understand their environment. This has also a

more insidious effect that blind children are only able to fully grasp (or even notice) some

concepts once they are able to physically explore their environment, as noted by Peltzer-

Karpf (1994, p. 40): “While sighted children formulate concepts such as ego, others, agent,

action and object through observation even before the crawling age, the blind child lacks

decisive possibilities here”.25 Thus, the “computational load” blind children face once they

are able to freely explore their environment is higher than for sighted children.26

Because blind children are only able, to some extent, to conceptualise a large part of

their environment later than sighted children, Dunlea (1989) postulates that they fail to

grasp the symbolic nature of language and fail to apply appropriately the words or chunks

of words they learn to new situations, whereas sighted children typically display a pattern of

overgeneralisation. Indeed, Andersen et al. (1984) notes that blind children tend to parrot

what they hear without further analysis (i.e. segmentation). Mills (1983, p. 145) also has

the same observations where he notes that the blind “child’s language may remain tied to

familiar social routines [...] and a reliance on phrases acquired wholesale is often couple

with a marked propensity for imitation and echolalia.” Concerning the lack of generalisation,

Andersen et al. (1984) observe “word-referent isomorphism, where children treat words as

if they are proper names”. Vision thus seems to act as a facilitator for abstracting and

conceptualising the world, as it is easier to perceive what makes a set of objects similar

when all the objects can be perceived simultaneously, such as noted by (Dunlea 1989, p.

87): “Vision is unique in that it provides instant simultaneous access to information which

is otherwise segmented by space and time. Without vision, most information is necessarily

perceived sequentially through haptic exploration”. When overgeneralisations do actually

occur, Dunlea (1989) reports that they are mainly based on tactile or auditory information,

but not on olfactory or taste information.

Finally, regarding phonetics and phonology, Dunlea (1989, p. 15) reports that blind

children tend to confuse only acoustically similar sounds while sighted children also confuse

sounds because of their visual similarity (i.e. mouth movements). Peltzer-Karpf (1994, p.

24) notes that even though blind children succeed in acquiring the phonological system of

their native languages, it generally takes longer for them to do so than for sighted children.

Hence, it appears that the lack of visual input slightly hinders language learning at an

early stage. As we mentioned, this is to be explained by the fact that vision helps children

conceptualise the world their live in. They can do so very early on as they do not need

24“Dieses Ergebnis ist hinsichtlich der Art der Sinnesminderung nicht überraschend, weil anzunehmen ist,
dass das Fragen ein wichtige Strategie der Blinden darstellt, die Welt zu erforschen.” (“This result is not
surprising in view of the sensory impairment, because it is understandable that questioning represents an
important strategy for the blind [child] to explore the world.”).

25Original citation in German: “Während sehende Kinder noch vor dem Krabbelalter durch Beobach-
tung Konzepte wie Ich, Andere, Agent, Handlung und Objekt formulieren, fehlen dem blinden Kind hier
entscheidenden Möglichkeiten”

26“Für das blinde Kind stellt der Wortschatzerwerb eine enorme intellektuelle Leistung dar, da es aufgrund
des fehlenden visuellen Inputs Wörter, die sich auf Farbeindrücke, räumliche Distanzen oder Grössordnun-
gen beziehen, nur schwer begreifen kann.” (“For the blind child, the acquisition of vocabulary represents
an enormous intellectual achievement, as the lack of visual input makes it difficult for him or her to grasp
words that refer to colour impressions, spatial distances or dimensions.”) Peltzer-Karpf (1994)
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to physically explore their environment, but simply have to watch and see. Contrary to

sighted children, blind children have to be able to walk (or crawl) in order to discover their

environment and make sense of it. Even though blind children and sighted children have

similar lexemes, the meanings they associate to them are different (Dunlea 1989, p. 59).

Only when they have conceptualise their world can lexical acquisition take place successfully.

Vision also helps children make sense of what is said to them, and help the child segment

the spoken input into smaller units.

1.3.6 Conclusion on Word Mapping

As we put forward in this section, language acquisition is a multimodal phenomenon, that

relies both on sensory perciptible cues, such as vision, and social cues, by using, for example,

shared attention frames in order to map an acoustic stimulus to its referent. In this thesis,

the model we use will only have access to perceptible cues — in the form of images — but

naturally will not be able to use any of the social cues generally used by children. Similarly,

our model does not have any Theory of Mind. Thus, we will investigate if using a simple

associanistic approach suffices to learn a reliable mapping between an acoustic stimulus and

a visual context.

1.4 Word Recognition

Once the child has isolated word-forms, they must be stored in the mental lexicon in such

a way they can be retrieved afterwards, so as to create her own utterances or to interpret

heard utterances. However, what appears to be simple, that is, storing word-forms in the

mental lexicon, is far from trivial:

The scope of phonological representation is a fine balance. On one hand, memo-

ries for words have to be sufficiently broad to incorporate the rampant variability

inherent in natural discourse and to normalize for accents, different voices, emo-

tions, and other factors. On the other hand, memories have to be sufficiently

specific to not incorrectly equate minimal pairs or tolerate mispronunciations.

(Singh et al. 2012)

Spoken word recognition can be defined as the process of accessing lexical items in the

mental lexicon from phonological patterns in the speech signal (Magnuson et al. 2013).

That is, it implies mapping what is being heard with lexical items stored in the mental

lexicon.

We will review in this section several models of spoken word recognition that have been

proposed to explain how humans, children included, manage to do so. This will allow us to

compare — later on in this thesis — word activation and recognition in humans and in a

neural model of visually grounded speech, and observe if the patterns that are learnt by a

neural model are similar to that of humans.

1.4.1 Cohort Model

One of the very first models trying to account for how humans recognise and extract words

from the speech stream is the Cohort model by Marslen-Wilson & Welsh (1978). Accord-

ing to this model, spoken word recognition proceeds in three steps that occur simultaneously

which are: access, selection, and integration.

Access consists in activating a set of word-forms in the mental lexicon which corresponds

to the acoustic input. Each word-form is paired to an activation unit, allowing for the
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activation of multiple word-forms at once. These units are only activated if the perceived

acoustic input exactly matches the internalised phonological form. If there is a mismatch

between the perceived acoustic input and the phonological form, the unit is deactivated

and the word coded by this unit is not considered a valid candidate anymore. Hence, the

initial phone of the speech stream activates a set of units whose word they code for all start

with the perceived phone. This set of activated word-forms is called a Cohort. The word-

forms of the cohort remain activated as long as the perceived acoustic input matches the

internalised phonological form of each word of the cohort. The words comprising the initial

cohort that do not match the perceived input are pruned. The process of interactive pruning

of the cohort is called selection. The integration process is part of the selection process, but

is however more concerned with the nature and function of the words of the cohort rather

than with form. Indeed, not only should the phonological form of the words in the cohort

match what is perceived, but they should also be be semantically coherent with the context

and syntactically fit within the sentence. Thus, words that do not fit either syntactically or

semantically are removed from the word cohort. Hence, this model integrates bottom-up

activation signals — from the speech signal to the phonological form of a word — as well

as top-down inhibition signal — essentially by controling for the syntactic and semantic

validity of the activated words.

This initial version of the Cohort model has several problems. First, it requires the

perceived acoustic stimuli to exactly match the internalised phonological forms. However,

it is well known that this is not how humans process speech. Indeed, humans are able to

recognise a word even when it is mispronounced and might not even notice any mispronun-

ciation (Cole 1973); when for example one sound is replaced by a similar sound ([m]/[n],

[s]/[S], etc.). As in this model, mismatching words are removed from the cohort, it would

thus be impossible to recognise mispronounced words. Second, it requires the onset of the

speech stream to necessarily be the onset of the word, which is unrealistic as one might drop

in a conversation or overhear a conversation and still identify what word was being uttered

when dropping in. Finally, this model implies that words should necessarily be recognised

once their offset has passed, or there are otherwise deemed unrecognised and unrecognisable

and removed from the cohort. However, Grosjean (1985) showed that in some cases word

recognition could only occur after word offset and not at word offset. This is the case for

words that may constitute the beginning of another word. For example, in the sentence “I

saw the bun in the store” (Grosjean 1985) the recognition of “bun” can only occur when

the /ð/ of “the” is perceived. Indeed, the word “bunny” (“[...] bun in [...]”) could be a

possible word. Similarly, the /n/ could be the beginning of another coherent word (such as

in “[...] bunny nibbling [...]”). However, once the /ð/ is perceived, the only option left is to

analyse the sequence as “bun in the”. Hence, word recognition might only occur well after

the word’s offset has passed, situation for which the Cohort model does not account for.

The Revised Cohort model (Marslen-Wilson 1987a) relaxes some of the constraints

of the first model. This model does allow for a word to be activated even if the perceived

form does not match the internalised form. Nonetheless, only slight mispronunciations are

tolerated and are able to activate a word (i.e. such as swapping /p/ for /b/ that only differ

by one articulatory feature: voicing). Also, this version of the cohort relaxes the effect of

context (integration) as “inappropriate words can [...] be readily perceived and identified,

so long as they are unambiguously specified in the signal”.27 Therefore, in this version, top-

down inhibition is removed so as to allow for non semantically or syntactically expected

words to be recognised. However, to compensate for this top-down inhibition, this model

incorporates the effect of word frequency, such that more frequent words may be activated

27The authors give the sentence “John slept the guitar” as example, where the listener is able to activate
the word “guitar” and hence recognise it even if it is grammatically incorrect to use it in this context.
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more readily. Yet, this version of the cohort does still not account for the fact that a large

majority of words can only be recognised passed their offset and not at word offset.

1.4.2 TRACE

The Trace model builds upon the Cohort model by conserving its “major positive fea-

tures”(McClelland & Elman 1986a), which are simultaneous word activation and interactive

selection and pruning, while trying to overcome the problems already discussed there above.

The Trace model is structured in three layers, where each layer represents a particular

linguistic unit: feature, phoneme, and word.

The feature layer constitutes one of the major differences with the Cohort model as

Cohort supposes the input is perceived as a sequence of discrete units. Here, the acoustic

input is perceived sequentially in terms of features: power, vocalic, consonant, voiced, etc.28

Each time slice (25ms) of the speech signal is represented by these features that can take

a value ranging from 1 to 8: 8 representing the highest activation possible, and 1 the

lowest. This feature layer is connected to the phone layer. The phones that match to a

certain extent the activated features are themselves activated. For example, /b/ would

be activated by the features voiced and burst (among other features). This feature layer

allows for several phonemes – that only differ by one or two features – to be activated at

once by the same acoustic input. For example, a [b] sound would also activate /p/. Indeed

/p/ and /b/ only differ by the value of the voicing feature, all the others being equal.

However, the phoneme that does not exactly correspond to the acoustic input will be less

activated than the one that exactly matches the input. Hence, this model, by simply adding

a feature layer allows for mispronunciations to activate the mispronounced phoneme, which

was not the case in the Cohort model, making the model much more flexible. Finally, the

phone layer is connected to the word layer. The activated phonemes activate the words in

which they appear. Contrary to the Cohort model, which gives the word onset a very

high importance, in this model words can be activated from any point on. For example,

the phoneme string /poôt/ is able to simultaneously activate words such “port”, “airport”,

“important” or “portable”.

Units inside the same layer (phoneme, or word) are linked through inhibitory connexions

so that the units that are the most activated inhibit to a certain extent the activation of

the others if they do not fit the input as well as the most activated units. The proportion of

inhibition is based on the proportion of overlap: “the strength of the inhibition between two

word units depends on the number of time slices in which they overlap”. A word is deemed

recognised if its activation value is above a given threshold. Contrary to the Cohort model,

this model is able to handle string of connected words. In this model, the speech stream is

implicitly segmented when the words are recognised.

This model brings a major improvement over the Cohort or Revised Cohort: words

can be recognised after their offset, and words may be activated from any point on, thus

relaxing the constraint on exact matching word onset the Cohort supposes. However, we

believe the biggest improvement the Trace model brings is the active competition between

words, as words really compete between one another. Indeed, in the Cohort model, words

are considered as competitors only because they belong to the same cohort. Yet, there is

no active competition between words, that is, there is no process by which a very activated

word inhibits the activation of another. In the Trace model however, there is an active

competition between words, where highly activated words inhibit the activation of other

words, until the one that matches the input the most eventually “wins”.

28For more details on the features see (McClelland & Elman 1986a, p. 15).
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1.4.3 Shortlist

The computational implementation of the Trace model, though functional, made it unre-

alistic. Indeed, theoretically, this model supposes that for each time slice, each and every

word of the vocabulary is considered a potential match, even if it hardly matched the spo-

ken input. Hence, the computational load — both in a computational implementation and

for a human brain — makes this model unrealistic when using a large vocabulary. The

Shortlist model (Norris 1994) is a two-stage model that circumvents this limitation. The

first step resembles the Cohort model, as it consists in building a shortlist (i.e. akin to

a cohort) of words that match the current input. The second stage is a competition phase

akin to that found in the Trace model.

At each time step, words that begin with the current phoneme as well as words that start

with the previously perceived phonemes are activated and added to the shortlist: taking the

word /kæt/ as an example, the initial /k/ activates a list of words that start with [k], the

following [æ] activates words that start either with [æ] or [kæ], etc. (Norris 1994, p. 204).

The words figuring in this initial list are removed if their activation score — which represents

how well the phonological representation they stand for matches the perceived acoustic input

— is below a certain threshold. The second phase is the competition phase, where the words

that most closely match the input compete between one another for recognition. As in the

Trace model, the proportion of competition is moduled by the overlap — here, in terms

of phonemes — between the competing words.

Consequently, this model is computationally lighter than the Trace model — as only a

subset of the lexicon is considered a valid candidate — while preserving most of its original

features. The Shortlist model however is purely bottom-up (i.e. there are excitatory con-

nexions between the phonemic level and lexical level), but does not implement the top-down

excitatory (from the lexical level to the phonemic level)29 that is found in the Trace model.

They deem this constraint “redundant” with lexical inhibition. Nonetheless, this decision

does not conform with reality, as lexical processing influence phoneme perception (see War-

ren (1970) for the phoneme restoration effect or Ganong (1980) for the so-called “Ganong

effect”). Furthermore, contrary to the Trace model that operates principally on hand-

crafted pseudo-acoustic features, Shortlist operates on strings of phonemes. They also

(see §10 in Norris 1994) introduce an input representation that is a bit more realistic than

discrete phonemes: mid-class transcription (i.e. coarse-grained transcription: (un)voiced

fricative/stop/etc.) to account for “uncertainty, or ambiguity in the input”. Nevertheless,

this solution is still less realistic than the feature input adopted by the Trace model.

1.4.4 Distributed Cohort Model

The Distributed Cohort Model (DCM) sets apart from the previously presented models

(Gaskell & Marslen-Wilson 1997).30 While the preceding models explicitaly incorporated

several levels of computation (feature layer, phone layer, lexical layer), the DCM does not.

Indeed, the DCM uses a simple recurrent neural network (Elman 1990, see Section 2.2.3)

where information is distributed over several processing units. Hence, instead of using

discrete representations, this model uses continuous representations. Even though artificial

neural models are structured in layers, these layers cannot be interpreted as representing

solely a single type of linguistic unit, where for example the first layer would represent

features, the second phonemes, etc. Instead, each layer might represent several linguistic

29Called “feedback” in the original Trace paper.
30It also sets apart from other word recognition models not presented here, see Weber & Scharenborg

(2012) and Magnuson et al. (2012) for an extensive review.
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units at once; the network learning on its own which is the best representation that each

layer should output in order to solve its task.

The network is inputted with a sequence of phonetic features and is trained to predict

a semantic vector and a phonological vector. While the target phonological vector was

constructed based on the phonemes of the target word, the target semantic vector is simply a

vector of ones and zeros randomly assigned to each word of the training set. Given its nature,

the model is purely bottom-up, and consequently no top-down contraints were implemented.

However, given its recurrent nature, the prediction at a given timestep depending on the

previous ones, this constraint is somehow implicit in the network.

In this model, the concept of activation is different from the other models. Indeed, while

in the other models a scalar value could be attributed to each word of the lexicon — scalar

value representing the strength of the activation — it is not possible here to have such value.

Instead, activation is represented by the closeness of the predicted semantic vector to that

of the words of the lexicon. Simultaneous activation of several words is still possible, but is

however implicit. Indeed, the predicted semantic vector may be considered as “a ‘blend’ of

the relevant representations”. Activating a word more than another one can be thought of

“modifying this blend” and “can be viewed in terms of movement through semantic space”.

A word is deemed recognised when the semantic vector corresponds exactly to the semantic

vectors of one of the words of the lexicon.

An interesting property of this model is that it is easy to test if word frequency influences

recognition. Indeed, to do so, it is only necessary to let the network see more instances

of one word than another at training time. The authors find that their network tends to

favour more frequent words by predicting a semantic vector which is closest to the most

frequent word, particularly when the number of competitor words is high, that is, when

many words start with the same sequence of phonemes. This behaviour is coherent with

previous research: Goldinger et al. (1989) indeed showed that more frequent words are more

easily recognised than less frequent words.

Hence, in such model, the notion of feature, phone, and lexical unit is implicit as all

the layers are able to reprensent this information simultaneously. Similarly, simultaneous

activation of lexical units is pervasive, by the prediction of a semantic vector which “blends”

the representation of possible words. However, in their experiment, they only test the

recognition of individual words and not full sentences.

1.4.5 Conclusion on Word Recognition

All word recognition models assume that word recognition proceeds in several steps: an

activation, a competition, and the final recognition. Nonetheless, the way these three steps

are carried out varies from one model to another. While the Cohort model requires the

acoustic input to exactly match the internalised representations, other models, such as

Trace and Shortlist do not, and allow for a word to be activated even if the internalised

representation does not exactly match the perceived acoustic realisations. The competition

step also varies. In the Cohort, there is no active competition between words as the degree

of activation of a given word does not influence that of others. This is not the case in the

other models where there is a true competition for attention between words.

The DCM sets apart from the other models and shows that word recognition may be

done using continuous representations only, and does not need, as for the other models, for

the intermediate representations to be discrete (i.e. phones). This model is relatively close

to recent models of speech recognition which rely on RNNs to decode speech.

However, all these models agree on the fact that word recognition necessarily implies the

simultaneous activation of a set of word candidates. This set of words is iteratively pruned
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if the acoustic input is too distant from the internalised representation so that ultimately

only one word remains.

1.5 Conclusion

In this chapter, we reviewed the strategies used by children to segment the spoken input into

sub-units. We showed that children use a wide range of strategies to find words. They first

start by using supra-segmental cues (i.e. prosody) as they are very sensitive to variation of

the fundamental frequency from the moment they are born. We also showed that children

hear a high proportion of words in isolation. Using these two strategies, they are able to

infer the canonical shape of the word-forms of their native language, so as to later apply

more advanced segmentation strategies. Indeed, they are able to compute forward and

backward transition probabilities between units in order to posit word boundaries, or use

phonotactic rules in order to extract segments.

We then presented several word recognition models that try to account for how humans

are able to activate and retrieve lexical units from the mental lexicon. All word recognition

models agree on the fact that a successful recognition strategy consists in simultaneously

activating several lexical units at once. Yet, the process by which these lexical units are

activated varies from one model to another. While some models require the acoustic input

to exactly match the internal representations, some are less strict, and allow for mispro-

nunciations.

Finally, we showed that language acquisition is a multimodal phenomemon that involves

all of the child’s perceptual abilities. We showed that intention reading and shared attention

were crucial components for the child to acquire its native language. Lastly, we showed

that vision provided the child with invaluable information to acquire her mother tongue.

Children that are deprived from this perceptual input, even though they are eventually able

to acquire their native language, are hindered, as it is harder to conceptualise the world

when such perceptual input is lacking.
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2.1 Introduction

2.1.1 Unsupervised Speech Processing

The work we conduct in this thesis fits into the scheme of unsupervised speech processing.

Speech Processing has always required a large amount of human supervision, for example

in Automatic Speech Recognition (ASR), in the form of the priors incorporated into the

models themselves — when for example using Hidden Markov Models (HMM) and Gaussian

Mixture Models (GMMs) which explicitly model phonemes (through GMMs) or syllables
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(through the use of triphone-based HMMs) — and more importantly in the form of man-

ual transcriptions. However, gathering and having human experts transcribe and annotate

data is a time-consuming process which requires expert-knowledge and is costly. Also, not

all languages have a written form, or some may have several non standardised written

forms, which make current approaches not usable on such languages. Hence, while tradi-

tional approaches are sustainable for developed languages,1 they are not for less-developed

languages.

Another motivation, which also constitutes the motivation of the work carried out in

this thesis, is to devise speech processing models that are closer to human speech processing.

Indeed, humans do not require much supervision to learn how to process speech, especially

when acquiring their native language. Notably, they do not require textual labels, but

instead use weak supervision signals, such as visual cues. These signals constitute weak

supervision signals as they constrain the learning process by contextually grounding it.

The work carried out in this thesis belongs to the sensory-based approaches of speech

processing models, as defined by Glass (2012). Sensory-based models of speech processing

are models that only require speech paired with sensory data in order to operate. That is,

such models do not require any annotated data nor human expertise to operate and “closely

match that of human spoken language acquisition” according to Glass (2012).

Figure 2.1: Unsupervised Speech Processing Hierarchy. Figure reproduced from Glass (2012)

except for the annotations in red which we added. The boxed text shows where the work

conducted in this thesis fits into this hierarchy.

In the following sections of this introduction, we will present models that also belong to

the class of sensory-based approaches to speech processing. We will focus more specifically

on models targeted on unsupervised term discovery and speech segmentation. We will then

argue that grounding speech to another modality is necessary if one wants to be able to

associate a meaning to the extracted word-forms, and hence be able to devise computational

models of lexical acquisition.

2.1.2 Spoken Term Discovery and Speech Segmentation

Most of the work done on unsupervised speech processing aims at segmenting an audio signal

into sub-units — generally phones or words — or without fully segmenting the audio, aims

at finding large lexical units, such as words or multiple word expressions.

1“developed” should be understood in the sense given by Ferguson (Fishman et al. 1968, p. 31-32), see
https://www.ethnologue.com/language-development.

https://www.ethnologue.com/language-development
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Lee et al. (2015) distinguishes between two terms: spoken term discovery, and unsuper-

vised lexicon discovery.2 The first term, spoken term discovery simply refers to a keyword

spotting task. That is, given a spoken utterance, the goal is to find similar acoustic seg-

ments across a collection of utterances. According to Lee et al. (2015), this task typically

involves using “unsupervised pattern discovery methods” such as Dynamic Time Warping

(DTW, Sakoe & Chiba 1978). This task only aims at finding keywords, or a least chunks

of words, but does not seek to obtain a full segmentation, where the boundary of each word

in the speech stream would be marked. In such keyword spotting task, the goal is only to

find one or more keywords, which results in the discovery of two boundaries — one at the

beginning of the word, one at the end — leaving the rest of the speech stream unanalysed.

Unsupervised lexicon discovery refers to the process which results in a complete segmen-

tation where ideally all word boundaries are found. According to the authors, such task

usually implies a two stage modelling, where a model simultaneously learns a sub-word (i.e.

syllabic, morphemic, etc.) distribution and a word distribution. Such two stage modelling

generates top-down and bottom-up constraints that result in a better segmentation overall,

as it explicitly takes into account the hierarchical linguistic structure of the input.

Spoken Term Discovery. Park & Glass (2005) introduced segmental dynamic time warp-

ing (S-DTW) for unsupervised term discovery. This method is based on dynamic time

warping which is a pattern similarity measure between two sequences (Rabiner & Juang

1993, p. 226). While DTW operates at a global scale, giving the similarity measure of

two sequences globally, S-DTW operates at a local scale, giving a similarity measure for

two sub-sequences taken from two larger sequences. The idea behind S-DTW is simple:

even though two spoken utterances are different, they might contain similar words. Hence,

even though the similarity measure might be low at a global scale, it might be high at a

local scale. Such methods allow to detect and eventually extract word-like units from raw

acoustic input without the need to result to a transcription at any point (Park & Glass

2008). Jansen & Van Durme (2011) further improved on vanilla S-DTW by introducing

algorithms with lower complexities, making S-DTW more scalable on large data sets. Re-

cently, Räsänen & Blandón (2020) proposed a two-staged probabilistic variation of S-DTW

making S-DTW usable on larger data sets.

Finally, we should mention the work of Räsänen et al. (2015) which introduced a method

for unsupervised term discovery without the need for S-DTW, by first slicing the input

speech signal into syllables — by considering local minima in the amplitude envelop as

boundaries — and then grouping the syllables together by finding frequent n-grams.

Unsupervised lexicon discovery. The goal of unsupervised lexicon discovery is to obtain a

full segmentation, and this usually involves Bayesian approaches which model several levels

of linguistic units at once. These methods are, to a large extent, inspired by prior work on

dealing with the segmentation of strings of discrete units (Goldwater 2006, Johnson et al.

2007). Taniguchi et al. (2016) introduced the Bayesian Double Articulation Analyser that

aims at learning in an unsupervised fashion a language model and an acoustic model using a

non-parametric Bayesian approach. Lee et al. (2015) combined unsupervised acoustic unit

discovery with Bayesian segmentation in order to unsupervisedly segment a speech stream

into lexical units. Kamper (2017) propose a model that jointly segments and clusters, where

first, boundaries are sampled, the resulting segments are then embedded and clustered by a

Bayesian GMM, which in turn gives information on the likelihood of the initial segmentation,

which is used to sample better boundaries.

Recently, neural architectures were proposed to solve this task; most of them using auto-

encoders. For example, Bhati et al. (2020) proposed a new auto-encoder architecture that

2Actually, a distinction is made with a third term, word segmentation, which is similar to unsupervised
lexicon discovery, but carried out on string of symbols (e.g. graphemes or phonological transcriptions).
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allows to segment the speech stream into phone-like units which are then clustered. Their

idea relies on unsupervisedly learning similar embeddings for audio segments that belong

to the same phone unit. Similarly to Räsänen et al. (2015), words are recomposed using a

n-gram strategy. Chen et al. (2019) propose an auto-encoder in which discrete boundary

decisions are taken at each time step. The intuition being that if the models take good

boundary decisions (i.e. place boundaries near true boundaries), the reconstruction process

should be facilitated. A similar approach was also proposed by Elsner & Shain (2017).

2.1.3 Grounding Language

A surprising fact of the previously mentioned approaches to unsupervised term discovery

and lexicon discovery, is that word spotting and segmentation are only done on the basis

of form alone, without any other contextual cue being used. To this extent, these works

are very reminiscent of the work carried out in linguistics that also abstract meaning from

the segmentation task (see Section 1.2). This is even truer since the creation of the Zero

Recource Speech Challenge.3 The original goal of this challenge is “unsupervised discovery

of linguistic units from raw speech in an unknown language” without using any linguistics

resource — hence the name — such as phonetic or orthographic transcriptions. The moti-

vation of such challenge is twofold: first, a technological one, which is to develop methods to

handle languages which do not have a written form (or language that might have one, but

which do not have a standardised orthography); and second, a psycholinguistic motivation,

which is to reproduce the cognitive processes at work in the human child when she learns

her mother tongue, as she does so without any supervision.4 Even though the website men-

tions the term zero resource should be understood in the sense of “zero linguistic resource”

and not “zero information besides audio (visual, limited human feedback)”, the only data

which is given to the participants is audio data. Hence, the entries to the contest rarely use

any other external resource than the one provided, and consequently rely solely on form.

When examining the literature, we notice that the words term and lexicon in unsuper-

vised term discovery and lexicon discovery are used as synonyms for word-form, when from

a linguistics perspective, a term or a lexicon is much more than a word-form (or a list of

word-forms respectively), but also includes information about meaning (among other infor-

mation). Language is not an independent system, and what gives it its substance is that it

is tied to the physical world. We used the example of blind children to show that, when de-

prived from one type of sensory input, namely vision, language acquisition was substantially

affected. Notably, blind children show a propensity to repeat phrases and sentences tied

to a particular context (see 1.3.5.2) without further analysing them. To draw an analogy,

term discovery and segmentation models are actually trained as sensory-deprived toddlers,

that are only trained on form. Word segmentation might lead to erroneous results if done

without contextual information: multi-word expression might be considered as a sequence

of several words instead of unique words (e.g. French for potato “pomme de terre”). The

decision as to whether these words should be considered as one unit or as several can only

be done on the basis of contextual information, that is, their linguistic referent. Similarly,

the phonological system of a language can only be inferred in light of the surrounding con-

text and whether the two word-forms that use these similar sounds have the same referent

or not. Therefore, it seems an adequate speech segmentation strategy should include a

3https://zerospeech.com/
4The pyscholinguistic motivation tends to disappear in the recent editions (2020, 2021), but is explicit

in the first edition (2015): “[provide] adaptable algorithms that [...] aid infant language acquisition research
by providing scalable quantitative models that can be compared to psycholinguistic data” Versteegh et al.
(2015).

https://zerospeech.com/
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meaning component. In their work, Bender & Koller (2020) argue that:

if form is augmented with grounding data of some kind, then meaning can con-

ceivably be learned to the extent that the communicative intent is represented

in that data

Consequently, grounding linguistic data to external knowledge seems to be a necessary

step to gain access to meaning. Yet, what does grounding more precisely mean? If grounding

is simply adding external knowledge, ASR can be thought of textually grounded model, as

text, which is external knowledge, is added to the model. Roy (2005) defines grounding as

follows:

The relationship between words and the physical world, and consequently our

ability to use words to refer to entities in the world, provides the foundations for

linguistic communication. Current approaches to the design of language pro-

cessing systems are missing this critical connection, which is achieved through

a process I refer to as grounding. [...] Language grounding refers to processes

specialized for relating words and speech acts to a language user’s environment.

(Roy 2005)

Grounding thus implies adding to linguistic data external non-linguistic data which

somehow reflects the physical world. The external data should also reflect to some extent

the communicative intent in the linguistic data as mentioned by Bender & Koller (2020).

This latter constraint is also visible in Roy (2005)’s definition, as “speech acts” necessarily

result from a communicative intent. Grounding language to another source of knowledge

acknowledges the simple fact that language cannot be considered in vacuo – that is, as a

whole complete in itself and disconnected from any context – but is actually produced in and

tied to a particular context. Even though considering language in vacuo does not preclude

from learning anything, accurate segmentation requires access to meaning. It should be

noted that grounding language to another source of information does not necessarily imply

a change in modality. For example, it is possible to ground the word-form /kaU/ (“cow”)

to the sounds [mu:] (“moo”) in which case it is the nature – linguistic v. non-linguistic – of

the acoustic stimulus that changes, but not the modality itself.

Hence, grounded models refer to a class of computational models that process some

linguistic form — either text or speech — in conjunction with another source of information

from the physical world. The fact that two modalities are processed in conjunction is

necessary, but is not sufficient: both modalities should occur simultaneously in the physical

world so that both are tied. Thus, grounded models do not process form alone, but are

able — or at least given the ability — to link this form to referents in the physical world,

or representation thereof.

2.2 Background

In the following section, we will present computational models that are able to ground

language, and more specifically speech, by using visual data. We will show that such

models constitute viable test beds to study lexical acquisition. But first, we will present

artificial neural networks, which are used to build visually grounded computational models.

2.2.1 Machine Learning

Machine Learning (ML) is a sub-field of Computer Science concerned with the creation and

“study of computer algorithms that improve automatically through experience” (Mitchell
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1997, p. xv). Instead of designing a specific algorithm to solve a specific task, ML seeks to

design algorithms that learn how to solve a specific task:

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E. (Mitchell 1997, p. 3)

Experience E consists of a set of examples — called a data set — which the program

will learn from. Learning occurs through a process of trial and error where the program

tries to solve the task T using the available data E and changes its parameters so as to

increase its performance measure P.

Among the several learning schemes that exist, two important ones can be distinguished:

supervised learning, and unsupervised learning. We use the latter in this thesis. In the

supervised case, the data set consists of a set of annotated (i.e. labeled) examples and the

task of the algorithm is to learn the relationship between the examples and their labels. An

example of such a task would be to learn to segment a string of characters given a training

set where each character is labelled so as to indicate if it constitutes a boundary or not.

In the unsupervised case however, the data set would consist of unannotated examples and

the latent structure of the data should be inferred by the algorithm. For example, in this

case the task would be to infer word boundaries from the string of characters alone.

Hence, contrary to the unsupervised case, where the model is only given raw data,

in the supervised case, the data is augmented with supplementary labels which will be the

learning target of the algorithm (Goodfellow et al. 2016, p. 105). More formally, Goodfellow

et al. (2016, p. 105) define unsupervised and supervised learning as follows: given a set

of examples X , unsupervised learning consists in learning the probability distribution p(x)

given several random vectors x ∈ X , while supervised learning consists in learning to predict

a set of values y given several random vectors x and their associated label y where (x, y) ∈ X ,

which can be interpreted as learning p(y|x).

Goodfellow et al. (2016, p. 105) argues that the lines between supervised and unsuper-

vised learning is blurry. It is the case for example of self-supevised learning. In this case,

the targets that the model should predict are drawn from the input data itself. That is,

the input data acts as its own label. Given a set of examples X , it could be more formally

defined as learning p(x) where x ∈ X by learning to model p(y|x\y) where y ∈ x. This is

the case of most recent language models (BERT), audio embeddings models (wav2vec), or

unsupervised learning of visual representations.

The data set used for learning is commonly split in three uneven sets: the training set

which is the largest (≈ 80%), the development (or validation) set (≈ 10%), and the test

set (≈ 10%). The training set, as its name suggests, is used to train the model. The

development set is used to test the model so as to select the best model checkpoint, while

the test set is only used once the best model is selected to report the final score.

2.2.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are a type of ML algorithms which are based on the work

of the the American psychologist Rosenblatt (1958). ANNs belong to the connectionist

approach of Artificial Intelligence (AI):

These models assume that information processing takes place through the in-

teractions of a large number of simple processing elements called units, each

sending excitatory and inhibitory signals to other units. (Rumelhart, McClel-

land & PDP Research Group 1986, p. 10)
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The central idea of connexionism is that a complex behaviour can be approximated

by a complex computation, that can in turn be broken down into smaller and simpler

computations realised by individual processing units. The inter-connexion of these units

(and hence computation) gives rise to the global behaviour. Connectionism was also referred

to as “parallel distributed processing” (PDP), where knowledge is distilled and distributed

over each processing units that constitute the network.
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Figure 2.2: Example of an artificial neuron

These processing units, originally called perceptrons, are now commonly called neurons

and may be represented as in Figure 2.2. A neuron receives n inputs X = x0, x1, ..., xn from

which an output ŷ is computed. Given the input features, the neuron is trained to predict

an output ŷ that should be as close as possible to the desired output y. In order to do

so, the input vector is weighted by a set of weights W = w0, w1, ..., wn which are learnable

parameters, and the output is further transformed by a non-linear activation function φ.

A bias neuron may also be added.5 The final computation of a single neuron can thus be

summarised as follows:

ŷ = φ(W · x+ b) = φ(

n∑
i=1

wixi + b) (2.1)

Real world problems are too complex to be solved by a single neuron. Thus, an arbi-

trary number of neurons can be used in conjunction so as to learn complex transformation

functions. These neurons are grouped into layers and form what is commonly referred to

as a Multilayer Perceptron (MLP). The first layer is called the input layer, the final layer

the output layer, and the one or more layers in-between are called the hidden layers. The

topology of the network is the result of how the different layers are connected. There are

several ways to connect consecutive layers of neurons, the simplest being by connecting all

the neurons of a layer to all the neurons of the next layer (fully connected layers). However,

this is not the only option: it is possible to introduce cycles (recurrent neural networks)

where the output of a layer serves as input for the same layer; or a layer can be connected to

the next layer but also the second-next or n-next layer (skip connections); or only partially

connect one layer to the next (sparse connections).

2.2.3 Recurrent Neural Networks

Theoretically, MLP can handle any type of data provided that the input layer is large

enough to fit it. For example, it is possible to train a simple image recognition model that

5Similarly to the b term of a linear regression y = ax+b, where b controls the y-intercept of the function.
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uses a MLP provided the size of the input image is fixed and known in advance (e.g. only

32×32 pixels images). In such cases, the data is flattened to a one-dimensional vector (e.g.

1×1024 for a 32×23 grey-scale image) which is then fed to the MLP. Such solution might

be satisfactory for simple problems, but it is unusable when handling sequential data, as

usually the size of the sequence to be processed is unknown.

Recurrent neural networks (RNN) are neural networks that are able to process sequential

data (Elman 1990). RNN can be considered as feed-forward networks augmented with

feedback connections.6 RNN can be formalised as follows:

ht = φ(Wxt + Uht−1 + b) (2.2)

where ht is the hidden state at timestep t, xt is the current input, ht−1 is the previous

hidden state, b is a bias term, φ is a non-linear activation function (usually sigmoid or

hyperbolic tangent), and where W , U and b are learnable parameters. Note that the only

difference with a feed-forward layer is simply the additional term Uht−1: the output at

a time step t does not only depend on the current input but also on the output at the

previous time step t−1. Thus, such computation allows to model the temporal dependency

that exists between consecutive vectors. The output of a RNN consists of a sequence T of

vectors. The final vector of the sequence (at timestep T ) can be viewed as the compact

representation of the whole input sequence, as the final vector depends on the computation

of all the previous vectors of the sequence. When the first element of the sequence x1 is

processed, ht−1 does not exist. In such case, this previous hidden state, noted h0, is set to

be a vector of 0, though in some cases the initial state might also be a learnable parameter

of the network.

Figure 2.3: Illustration of a RNN folded (right) and unfolded over time (left). The diagram

is annotated according to Equation 2.2. Note the initial state h0 which is added for the first

timestep.

Note that processing a sequence with an RNN is different from running a simple feed-

forward network over each vector of the sequence. Indeed, in such case, the output at a given

time step would be totally independent of the previous output. Such computation would

not be able to model the sequential nature of the data, and would be a simple projection of

the input vectors. Hence, the feed-back connection of RNNs really constitute the backbone

of this neural model.

Even if RNNs are able to model sequential data and keep track of local dependencies

relatively well, they are unable to capture long term dependencies in the input sequence.

Indeed, as the sequence size T grows longer, the vector ht contains less and less information

6as defined by Hochreiter & Schmidhuber (1997).
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about the beginning of the sequence. The information about the past fades away as the

previous hidden vector ht−1 is combined at each timestep with new information. Gated

units were introduced to solve this problem.

2.2.4 Gated Recurrent Units

LSTM (Hochreiter & Schmidhuber 1997) are a type of gated units and are able to learn

both long term and short term dependencies.7 LSTM are equipped with a memory cell that

is used to store information about the past timesteps. Two gates (the input gate and the

forget gate) control which information is added to the memory cell and which information

should be removed. Such gating mechanism thus enable the LSTM cell to keep track of

both long term and short term dependancies by adding to the memory cell information that

needs to be preserved over several timesteps. However, LSTM are hard to train as they

have many parameters, notably because of the parameters used for the memory cell and

additional gates.

Cho et al. (2014) introduced Gated Recurrent Units (GRUs) that are also able to keep

track of long term and short term dependencies such as LSTMs, but with fewer parameters

which make them easier to train. A GRU is formally defined as follows:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ĥt = tanh(Whxt + Uh(rt ∗ ht−1) + bh)

ht = (1− zt) ∗ ht−1 + zt ∗ ĥt

(2.3)

where Wz, Uz,Wr, Ur,Wh, Uh are learnable matrices, bz, br, bh are bias terms, and σ

represents the sigmoid activation function. A GRU has two gates: an update gate z, and a

reset gate r that both independently compute a scalar value at each time step t (zt and rt ∈
[0, 1]). Given the current input xt, the value of zt represents a ratio between how much

information should be carried on from the previous time step [(1−zt)∗ht−1] and how much

new information should be integrated [zt ∗ ĥt]. This gate allows to control for long term

dependencies. rt represents how much the new state should depend on the previous time

step [rt ∗ ht−1] thus controlling for local dependencies.

Even though LSTM and GRU are able to keep track of long- and short-term dependen-

cies, encoding the meaning of a whole sequence in a single vector is still challenging and the

recurrent unit might forget the beginning of the sequence, especially when the sequence is

particularly long. One solution is to encode the sequence from both ends, where one GRU

processes the sequence from left to right and another GRU processes the input sequence

from right to left. The final vector is a concatenation of both vectors. Such processing is

know as bidirectional processing, as opposed to unidirectional processing (which is usually

done from left to right).

2.2.5 Attention Mechanism

Even when using bidirectional recurrent cells, encoding the meaning of a whole sequence

in a single vector remains a difficult task. Attention Mechanisms (Bahdanau et al. 2015)

were introduced to solve this problem. This solution was originally thought for machine

7LSTM were introduced to solve the vanishing/exploding gradient problem which we will not discuss
here. However, the fact that vanilla RNN cells are unable to keep track of long term dependencies is a
direct consequence of the vanishing gradient problem.
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Figure 2.4: Illustration of a 2D-convolution on a 7× 7 input producing a 5× 5 output when

using 1 kernel of size 3 × 3 sliding from left to right from top to bottom with a stride of 1,

and zero padding. The convolutional kernel is depicted with borders of different colours at

different places; the result of the convolution is shown by a shaded box with the same colour.

For illustration purposes, we only depicted three positions where the kernel could be, when

naturally the convolutional kernel scans the whole input. Usually more than one kernel is

used.

translation purposes, but found a wide echo and is now used for many other tasks. The

intuition of such attention mechanisms is simple: instead of keeping the last vector of the

sequence — which should encode the meaning of the whole sentence — all the vectors that

were computed at each time step are kept and a weight is assigned to each of them so as

to give more importance to some vectors than others.

The weights are computed by the network itself and learnt at training time. Hence, the

network learns which vector(s) in the input sequence should be given more importance in

the final representation without any supervision. An attention mechanism can be formalised

as follows:

c =

T∑
t=1

αtht

αt =
exp(score(ht))

T∑
t′=1

exp(score(ht′))

(2.4)

where c, the context vector, is the weighted sum of the hidden vectors, and αt is the

attention weight for time step t, where αt ∈ [0, 1] and
T∑

t=1
αt = 1. The formalisation we

present is very general: the scoring function score (usually a MLP) computes a scalar

value for each ht. However, the precise way this scalar value is computed depends on the

particular implementation of the attention mechanism and may not only be a function of

ht.

With such attention mechanism, vectors for which the attention weight α is high will be

highly represented in the final vector c, while vectors which were assigned a low attention

weight won’t.

2.2.6 Convolutional Neural Network

Convolutional cells (Fukushima 1980, LeCun et al. 1999) were originally introduced for

image processing. As already mentioned, even though MLP may be used to process images,

they become unusable in practice when the size of the image grows, as the size of the input
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of the MLP has to fit the whole image (e.g. 32M for a 32Mpixel image). This makes MLP

unusable in practice on such large images. Also, as the input data is flattened, information

about which pixel is adjacent to which in the original becomes harder to pick up.

Convolutional cells enable to solve this problem by repetitively applying a convolutional

kernel (also called a filter) to the input image. The image is hence processed piece-wise, one

portion at a time. While such kernel processing was known before neural networks,8 the

convolutional neural network allows for the kernels to be learnt: the kernel becomes part of

the trainable parameters of the network. It hence allows the network to learn the kernels,

as usually more than one kernel are used, so as to best solve the task the network is trained

for. Convolutions are also easy to implement, as they just consist in matrix multiplication:

the sub-matrix that represents the portion of the image being processed and one for the

convolutional kernel.

Three types of convolutions exist, depending on the axes on which the kernel slides:

1D convolution (where the kernel slides along one axis), 2D convolution (slides along 2

axes), and 3D convolutions (along 3 axes). For our purpose here, we will only consider 1D

convolutions as they constitute the most used type of convolutions for speech processing9

when working with MFCC vectors; such as we do in this thesis.

Convolutions are parametrised by:

• k the number of convolutional kernels used to scan the input (in Figure 2.5 on the

Kernel Axis, k = 4). If only one kernel is used, the output of the convolution will

be a 1D vector of length Sout if more than one kernel is used, the output will be of

dimension Sout × k.

• size which is the height of the kernel which represents how many input vectors are

processed at once (in Figure 2.5, size = 2). In 1D convolutions, the length of the

kernel usually is the same as the length of the input vectors (in Figure 2.5, the lenght

of the kernel is equal to the dimension of the MFCC vectors: 13 ); though depending

on the implementation, the convolutional kernel can be split over several groups that

only see one part of the vectors.10

• stride represents the shift along the Time axis (in Figure 2.5, stride = 1), meaning

the kernel will slide along the Time axis by moving by stride vectors at each step.

• padding represents how many blank vectors are added before and after the actual

vectors to be processed. This allows to control for the output size of the sequence

Sout given the original input size Sin.

The length of the output sequence Sout can be computed as follows:

Sout ≈ b
Sin − size + padding start + padding end

stride
c+ 1 (2.5)

where padding start refers to the number of padding vectors added before the input sequence,

and padding end to the vector added after the input sequence; the precise number of vectors

added at each end depending on the padding mode used.

1D-convolutions are widely used for speech processing as each convolutional kernel ag-

gregates several vectors along the time dimension into a single value. This is particularly

useful for speech, as each phone of the speech stream straddles over several MFCC vectors

8Where each type of kernel (edge detector, blur, etc.) was hand crafted. See example https://en.

wikipedia.org/wiki/Kernel_(image_processing).
9Though 2D convolution may also be used when working with spectrograms.

10see https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d.

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d
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Figure 2.5: Illustration of a 1D-convolution on a Sin × 13 input MFCC matrix producing

a Sout × 4 output (see Equation 2.5 on how to compute Sout) when using 4 convolutional

kernels of size 2 × 13 sliding along the Time axis with a stride of 1, and zero padding. The

position of the convolutional kernels are depicted with borders of different colours — blue and

red — to materialise the evolution of their position over time; and the result of the convolution

operation is shown by a shaded box with the same colour in the output matrix. For illustration

purposes, we only depicted two positions where the kernels could be (at kernels start position

and kernels end position), when naturally the convolutional kernels scan the whole input. We

also only depicted 4 kernels — shown on the Kernel axis, with different shades of the same

colour — when usually more are used.

— which usually represent 10ms of the original input signal, that is, less than the length

of a phone. The use of different kernels also allows the network to select different features

in the original input, and encode different correlations between the input frames. Also, the

convolved input is usually shorter than the original input given appropriate choice of the

kernel size, stride, and padding (the longer the stride and the kernel, the shorter the output

sequence). This allows for the network to learn to properly downsample the input, and

hence reduce the computational load, particularly when using recurrent layers afterwards.

2.2.7 Loss Function and Backpropagation

The perceptron, and neural networks in general, have a biological motivation (i.e. the

nervous system) and authors regularly use biological terms (e.g. “stimuli”, “excita-

tory/inhibitory inpulse”, see Rosenblatt 1958) to describe how such models work and com-

pare them to biological systems. Nevertheless, artificial neurons widely differ from their

biological counterparts in the way the computation is realised, in their organisation, and in

the way actual learning takes place: gradient descent. Using gradient descent as a learning
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scheme imposes certain constraints when designing the network: every operation should be

differentiable.11

The goal of the network is given an input x to predict an output ŷ which is as close as

possible to the desired (true) output y. The success of the operation is measured using a

loss function (see Equation 2.6). During training, the network is encouraged to minimise

the difference between the predicted output and the true output, and the value computed

by the loss function will serve as the basis to update all the weights of the network so as to

reach its goal.

L(y, ŷ) = |y − ŷ| (2.6)

Because the output ŷ directly depends on the output of the network, which in turn

depends on the parameters of the network θ, it is possible to change them so as to tune

the network so that the predicted output is closer to the desired output. This operation is

done through gradient descent using the backopropagation algorithm (Rumelhart, Hinton

& Williams 1986). This operation consists in computing the derivative of the loss function

with respect to the parameters of the network. Intuitively, this measures how responsible a

given weight is for the discrepancy between the predicted output and the expected output:

θt+1 = θt − η
dL(y, ŷ)

dθ
(2.7)

where the weights at θt+1 are updated by a factor η which is called the learning rate.12

The learning rate controls the strengths of the updates of the network’s weights. If it is set

too high, the network might miss the optimal solution, while a too small learning rate will

make learning slower and additionally may have the network stuck in a local optimum. Note

that the equation 2.7 corresponds to stochastic gradient descent, which corresponds updates

the weights of the network based on the loss value of one training example (see Goldberg

2017, p. 31). Even though this approach is effective, it might take time to reach the global

minimum, hence, usually batched gradient descent is used, where the loss is averaged over

a batch of examples, that is, over several examples randomly sampled from the training set.

Hence, for each backward pass (i.e. gradient descent) all the weights of the network

are updated so as to try to minimise the training cost. Even though neural networks are

biologically inspired, the way learning takes place is not cognitively plausible (forward pass

and backward pass use the same path, when biological synapses are unidirectional; artificial

neurons are organised in well defined layers, and not in a biological brain, etc.).

2.3 Visually Grounded Speech

In this section, we then present Visually Grounded Speech (VGS) models and the analysis

methods that have been developed in order to understand what such models have learnt.

Finally, we will examine to what extent VGS models are able to model lexical acquisition.

11This is not entirely true: for example, Reinforcement Learning does not require the loss function to be
differentiable. However, in most cases, all the operations are differentiable.

12We here take the simplifying assumption that gradient descent is done for only one instance x and not
a batch of items.
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2.3.1 Models

2.3.1.1 The CELL Model

One of the very first models of Visually Grounded Speech (VGS) is the CELL (Cross-

channel Early Lexical Learning) model developed by Roy & Pentland (2002) and Roy

(2003). This model was explicitly developed so as to understand how the interaction of

visual and auditory stimuli enabled lexical acquisition. The goal of the CELL model is to

learn audio-visual mappings (called audio-visual prototype) between various objects and

their spoken word-forms so as to constitute a proto-lexicon such as a child would. This

model strives to implement components that reproduced known cognitive abilities such as

short term memory (STM) and long term memory (LTM) so as to simulate the memory

abilities of a child.

In order to learn audio-visual prototypes, the CELL model is inputted with a visual

context (image) and its paired utterance. The data used to train the model was gathered

specially for this experiment and consists of child directed speech uttered by a caregiver

while a child was playing with various objects. The CELL model searches for recurrent audio

patterns, which are then stored in the STM along with the object considered at the time

the discovered pattern was uttered. The LTM then scans the STM so as to find repeated

occurrences of a given audio-visual pair — called AV event — and if several are found, they

are copied into the LTM. The AV events stored in the LTM are then further processed to

remove spurious pairs. Indeed, some words may occur frequently (e.g. determiners) while

not being linked to a specific visual context. Hence, spurious AV events are removed based

on a mutual information criterion: the lower it is, the less the two modalities (i.e. speech

and vision) are tied, and hence do not form a valid AV pair. If mutual information is above

a certain threshold, the AV event becomes a lexical item which is stored permanently in

the LTM.

The results show that the CELL model is able to learn semantically valid AV items (e.g.

shoe, key, dog, doggie) and reports 85% semantic accuracy of the discovered pairs. Some of

the AV items also contain non standard “words” — which are not counted as semantically

accurate pairs — such as onomatopoeic sounds (e.g. barking, engine). This is an interesting

result, as onomatopoeias are also acquired by young children and used both in perception

and production (see Laing 2019). In order to compare the lexicon that would be acquired

when no visual stimuli is used, the authors also ran experiments using a “blind” model, that

is, a model that does not use visual context. The results are very different with 0% semantic

accuracy. Most of the AV pairs in this setting only comprise onomatopoeias and recurrent

patterns not linked to the object in consideration (e.g. “what you gonna do”, “really good”,

etc.). Hence, the key finding of the CELL model is that visually grounding speech increases

the accuracy of word learning and speech segmentation compared to a model that would

operate on speech only; and this model reproduced some behaviours observed in children

(such as learning onomatopoeias).

This model however made several simplifying assumptions, notably the fact that speech

is perceived categorically in terms of phonemes13 and images had to be pre-processed so

as to first detach the background from the foreground, and then isolate the object from

the image. Also, the visual input was deliberetaly simplified so that it only contained one

object only, hence facilitating the task of the model.

13Children do in fact perceive speech categorically. However, categorical perception for children should
be understood in terms of phones (e.g. [b] is perceived differently from [p], or [p] from [p^] or [ph]) but not
in terms of phonemes. It is only later that they learn that the acoustic difference between [b] and [p] is
meaningful — and are thus two phonemes /b/ and /p/ — while the acoustic difference between [p] and [p^]
and [ph] is meaningless in English.
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In a model similar to Roy & Pentland (2002), Yu et al. (2005) test if audio-visual

mapping was enhanced by gaze information. To test this, they had a picture book in

a foreign language read by a native speaker and recorded. The speaker also had a gaze

tracker so as to pinpoint where in the picture they were looking while reading a particular

sentence. Their model is inputted with a visual context (image from the picture book) and

an acoustic stimuli (sentences from the story, in the form a string of phonemes). The model

then tries to find repeated patterns in the acoustic stimuli and learns to pair them with the

visual context using an EM (expectation maximisation) algorithm. They train their model

on two different conditions: the intention-cued condition, and the audio-visual condition.

In the first case, the model is inputted with a string of phonemes and the particular object

that was watched by the speaker; in the second case, the model is still inputted with a

string of phonemes, but instead of a particular object watched by the speaker, the model

is given all instances of the objects in the image. Therefore, in the latter, finding a good

AV pair is more challenging, as the model has to learn which object is most likely to have

occurred with a given recurring audio sequence.

Their results shows that audio-visual mapping was easier when gaze information was

available for the model than when it was not. Consequently, their experiment shows that

co-occurrence statistics do not seem to be enough, even though they enable computational

models to learn a few reliable word-object mappings such as in Roy & Pentland (2002).

Word-object mapping can be learned more reliably when additional information (such as

attention of the speaker) is available. Their results are consistent with research in child

language acquisition which shows that shared-attention is a critical parameter for children

to acquire their language. Recall that for blind children, it is the lack of shared attention

(or its impoverishment due to the lack of a visual context) that leads them to acquire their

native language slower than their sighted peers.

2.3.1.2 CNN-based Neural Models

Neural Networks enabled researchers to model even more complex interactions between

the visual and the spoken modalities. Gabriel et al. (2014) introduced, to the best of our

knowledge, the first neuronal (CNN-based) VGS model, where the model is trained to map

images to isolated spoken words. Their model has two branches, an audio branch and a

visual branch which vectorises the input image and word. The model is trained to minimise

the cosine squared distance between matching vectors, while making this distance greater

for mismatching vectors. Their model is then evaluated on a speech�image retrieval task:

retrieve the matching image given an input word, or vice-versa. Their results indicate that

their network was indeed able to capture cross-modal links and effectively learn to map a

spoken word to its visual context. Their model paved the way for models handling more

complex acoustic stimuli, such as full captions instead of isolated words.

Harwath & Glass (2015) building upon the work of Gabriel et al. (2014) proposed

the first model that could handle full spoken captions instead of isolated words. Their

model can be considered as an upgraded version of the CELL model as it makes also a few

simplifying assumptions. First, the images are processed by a CNN object detector that

outputs 20 bounding boxes (19 bounding boxes around each detected object in an image

and an additional bounding box for the the whole image); and second, the captions are

pre-segmented at word level. The goal of the network is to align each word in the audio

caption to each bounding box in the image. Finally, a global similarity score is computed

for each image/utterance pair, and the network is encouraged to make the similarity score
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Figure 2.6: Traditional architecture of neuronal VGS models. Figure inspired by Chrupa la

et al. (2017a) and Khorrami & Räsänen (2021). The difference between CNN-based and RNN-

based model depends on neural cells used for the speech encoder. Note that the embedded

images and utterances need not be vectors but may also be matrices. The dashed box repre-

sents the shared embedding space in which the similarity measures between matching (green

arrow) and mismatching (red arrows) image and utterance pairs is realised. Note that the

shape of the embedding space depends on the nature of the encoders. The embedding space

used by RNN-based models is typically a d-dimensional hypersphere, where d denotes the

dimension of the embedding vectors (see Section 3.3.2). Transcription of the audio signal is

only given for illustration purposes and is not inputted to the model. Black arrows show the

direction of the information flow through the network.

between a matching image/utterance pair higher than with mismatching pairs.14 Similarly

to Gabriel et al. (2014) their model is evaluated on a speech�image retrieval task. Their

results show similar trends to that of Gabriel et al. (2014): it is easier to find a caption given

an image than vice-versa. Nevertheless, in both cases the results are much better than what

randomness would predict. Harwath & Glass (2015) observed their model reliably learnt to

map isolated words to their correct visual referent via the bounding boxes.

Harwath et al. (2016) improved on their previous work so that their model could use

full captions instead of pre-segmented captions. Also, instead of running an object detector

on the image, they simply use the penultimate activation of a pre-trained VGG network,

yielding a 4096-dimensional vector representing the input image. The audio input is pro-

cessed by three layers of 1D-convolutions with multiple filters at each layer. Contrary to

their previous work, they use the dot-product of the image vector and the speech vector as

similarity measure. This work allowed them observe that some parts of the captions have

a higher degree of similarity with the image than others, suggesting their model was able

to detect highly relevant acoustic sequences in the speech signal.

Harwath & Glass (2017) built upon their previous work by trying to find image regions

regularly associated with spectrogram regions, so as to build audio-visual pairs. While

they used the same model as their previous work, their loss function is different and is the

same as in their first work Harwath & Glass (2015), that is a contrastive loss function. In

order to infer an audio-visual collection, they first apply a grid over the image so as to

divide the original image into sub-sections. They then run a VGG network over all possible

14Following the objective function used by Karpathy & Li (2017) for image/caption pairs, which will also
be used in this thesis (see section 3.3.2).
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groupings of consecutive image blocks so as to have several embeddings for one image.

They proceed similarly for the captions, slicing them into subsections and embedding each

subsection. They then compute a similarity measure between the representation of each

image region embedding and each caption region embedding to find which have the highest

degree of similarity. This effectively allows them to extract fine-grained image-audio pairs

in an unsupervised fashion. This is even more impressive when one recalls that the network

was trained on unsegmented images and unsegmented captions, hence showing the network

somehow segmented the spoken input into word-like units.

Finally, in their latest work, Harwath, Recasens, Suŕıs, Chuang, Torralba & Glass (2018)

completely change their model so as to have a fully convolutional model: instead of using

VGG vectors, they use the full VGG network up until the last convolutional layer (i.e.

removing the fully connected layers), and use 1D convolutions for the input caption. Also,

contrary to their previous work where the output of their audio branch is a 1D vector,

they here keep the whole feature map, yielding a 2D matrix. In order to join the output

of both branches, they use a dot product as in their previous work. Keeping the feature

maps of both branches allows them to detect saliency regions between the convolved image

and the convolved spoken input. Hence, they are able to highlight specific regions in the

spectrogram that correspond to specific regions in the image, allowing them to build fine-

grained image/audio pairs in an unsupervised fashion, contrary to their previous work

which required computing similarity for each possible subpart of the image and spectrogram

manually.

In their work, Harwath and colleagues thus went from finding coarse audio/visual pairs

from pre-segmented images and pre-segmented captions to finding fine-grained audio/visual

pairs without any supervision from raw speech paired to raw images. Overall, their work

shows it is possible to extract word-like units from raw speech using images as a form

of weak supervision. Most importantly, while their network was trained to minimise the

distance between an image and its matching caption at a global scale, the network derived

similarities at a local scale. Hence, lexical acquisition seems to be a by-product of the main

task, and appears “naturally” in the model.

Kamper, Anastassiou & Livescu (2019) also proposed a visually grounded CNN-based

model to learn speech segment embeddings in a query-by-example search task: given an au-

dio excerpt, the network should find semantically, and not only phonetically, related audio

excerpts among a collection of utterances. Contrary to the model of Harwath et al. (2016)

that uses raw images, here images are represented as a “bag-of-visual (semantic) tags”: a

vector, where each dimension represents a given object in the picture and is assigned 1 if

the object that is represented at a given dimension is in the image, 0 otherwise. Speech

utterances are sliced into sub-parts ranging from a minimum length up to a defined max-

imum length. The goal of the network is to embed each speech excerpt and predict the

bag-of-visual semantic tags — which boils down to a classification task. Here, the images

only serve a grounding purpose and are only used when training the network. The intuition

is that the network will be able to learn how to generate similar embeddings for speech

segments which have the same referent in the image. For example, the words “flower” and

“rose”, while being phonetically different, are semantically related, and might refer to the

same object in the paired image. Hence, the embeddings of these two words should be

similar. Therefore, at testing time, the network should be able to retrieve audio excerpts

corresponding to the word “flower” even when prompted with the word “rose”. This is in

fact what is observed at testing time, the network is able to retrieve semantically related

words which are not phonetically close. Using images to ground the meaning of the audio

excerpts proves successful.

Räsänen & Khorrami (2019) recently introduced a CNN model specifically designed to
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study child language acquisition. Their model is trained to encode the spoken input, in

the form of a spectrogram, into a bottleneck representation that is used simultaneously in

two sub-tasks: the first task is to predict a visual context (in the form of a 60-dimensional

vector representing objects) as traditional VGS models do; and the second task, a decoding

task, which consists in predicting the original spectrogram. The task thus assumes that the

ideal representation should both be able to correctly predict the visual context, and should

incorporate enough details so as to be able to reconstruct the spoken input. Their model

is able to learn to correctly map a spoken input to the visual referent while making some

plausible mistakes such as confusing similar sounding words (e.g. cat/hat) or confusing

semantically related words (e.g. nose/mouth). Most importantly, they show that removing

the prediction branch of their model yields worse results, suggesting that joint learning of

perception and production is essential.

2.3.1.3 RNN-based Neural Models

Contrary to CNNs, RNNs are designed to process sequences such as speech. Even though

CNNs are also able to process sequences, RNNs are more plausible from a cognitive per-

spective. Indeed, as already mentioned (see Section 2.2.3), the output at a given timestep

depends on the predictions of the past timesteps, which is not the case for CNNs. While

RNNs are able to model long-term dependencies, CNNs are unable to so, as their predic-

tions do not rely on the predictions made at the previous timesteps. Consequently, the way

speech is processed in RNN-based models is closer to how humans process speech, that is,

sequentially and incrementally.

The first RNN-based VGS model we know of is that of Chrupa la et al. (2017a). This

model builds upon their previous work on textual models (Chrupa la et al. 2015) and their

analysis (Kádár et al. 2015). The architecture used is very similar to that of the previously

mentioned works and has two branches: an audio branch and a visual branch; and uses

the same type of loss as Harwath & Glass (2015). Similarly to Harwath et al. (2016), they

use VGG vectors as image features. Nevertheless, contrary to Harwath et al. (2016), the

speech encoder consists of stacked recurrent highway networks (RHN, Zilly et al. 2017)

instead of convolutional layers.15 The final embedding of the audio branch is computed by

an attention mechanism (see Section 3.4) which learns how to weight the vectors of each

timestep, so as to give more weight to specific parts in the speech signal. They evaluate

their model on a speech→image retrieval task, that is, given an input spoken caption, the

network should retrieve the matching image. They report better results than Harwath &

Glass (2015), showing RNN-based model are also able to adequately map both modalities.

More recently, Merkx et al. (2019) built upon the architecture of Chrupa la et al. (2017a),

adding an attention mechanism at each layer (implemented as in Chrupa la et al. 2017a),

and using bidirectional recurrent cells instead of unidirectional cells. Their model reached

even higher performance levels than Chrupa la et al. (2017a) and Harwath & Glass (2015) on

the same data set. Several optimisations were also made, such as the use of cyclic learning

rate (Smith 2017) which consists in having a learning rate which increases and decreases

several times between an upper and lower bound, instead of a having a strictly decreasing

learning rate as what is usually done. This allows the model to get out of local minima it

could be stuck in and converge to a overall better solution.

However, these better results come at the cost of cognitive plausibility. Indeed, as this

model uses bidirectional cell, it processes the spoken input from both ends at the same

15RHN are recurrent cells, similar to LSTMs or GRUs, which are however able to perform more transfor-
mation steps for each recurrent transition. This allows to learn better representations while reducing the
size of the stack of recurrent cells, which in turn makes learning more efficient.



2.3. Visually Grounded Speech 53

time, which is of course not possible for humans. Furthermore, contrary to the previously

mentioned approaches (be they CNN of RNN-based), their model uses bottleneck features

Fér et al. (2017) extracted from a multilingual neural network trained to predict phonemes.

Hence, by using such features, their model has some knowledge about the basic units of

speech which might help the model converge more rapidly as the input is more informative

than plain MFCCs.

Recently, Krishnamohan et al. (2020) explored if VGS models are able to do few-shot

learning of novel noun/object pairs. The goal of few shot learning is to give to a neural

network as few examples as possible — 1 for one-shot learning, n for n-shot learning —

and see if the model is able to learn from these few examples and generalise. To do so, they

used novel (fake) objects from the NOUN (Novel Object and Unsual Name, Horst & Hout

2015) data base where fake objects (3D generated images with various views of the same

object) are given fake names (e.g. kakimense, tanzerposk, etc.). They define n-shot learning

in their experiment as presenting “n augmented variants [i.e. views] of the stimulus [i.e.

novel image/noun pair] before the evaluation”. Their model also has two branches, a visual

branch which extracts bottleneck features, and an audio branch which is inputted with ASR

bottleneck features which are then processed by an LSTM. As in the aforementioned models,

their model is trained to minimise the distance between the encoded image and the encoded

isolated word referring to the object in the image. Their network is first pre-trained on a

set of existing noun/object pairs using a computer vision data set, and they then perform

transfer learning on the novel objects. Their result shows that the VGS model they train

is able to do 1-shot learning, that is, to learn the association between a novel object and

associated noun when presented with one instance, and generalise to novel instances of the

same object/noun pair. They compare their result with human data and show their model

is on par with human results. We could however argue that they consider an idealised case

of few-shot learning, where the label is presented in isolation. This is rarely the case, as

usually the novel word is embedded in a full sentence, and humans, and more specifically

chidren, are still able to do few-shot learning in such case. It remains to be investigated if

it is also the case for neural networks.

We should mention a last model before ending this section which, even though it uses

text instead of speech, remains interesting in its approach: that of Hill et al. (2020) and

Hermann et al. (2017) which also aims at studying lexical acquisition. Contrary to the

previous approaches, their model is trained using a 3D virtual environment, which the

model, in the form of a virtual agent, can actively explore. The goal of the model is, given

an instruction (e.g. “Find and bump into a pencil”), to learn to distinguish the target

object (pencil) in the virtual environment from a distractor object (e.g. fridge). If the

model bumps into the correct object, then it is said to have learnt the word for the target

object. The model is not only trained to distinguish object based solely on their shape, but

also on their colour (e.g. “Find and bump into the blue object”), pattern, or position (e.g.

“Find and bump into the object furthest to the left as you look”). The model is free to

explore (i.e. “walk”) in this virtual world so as to fulfil the instruction it is given. Hence, this

task requires the model to understand the instruction it is given and to actively explore its

environment so as to understand what the target object looks like. Contrary to the previous

approaches were the model is given static data (i.e. the model cannot change the data it is

given so as to gain more insight), here the model is free to get a better understanding of the

object by seeing different views of the same object by moving in the virtual environment.

Thus, even though the input is less realistic and does not reflect the complexity of the real

world, the model here is given the possibility of exploring its environment, such as what a

child would do, which is impossible with the previous approaches.

The visual branch of their model is a CNN which processes the images of this virtual
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world (of shape 84× 84× 3[RGB colours]). The language branch of their model is a simple

feed forward layer which embeds the instruction, presented as a single world. The output

of both branches are then merged and further fed to a LSTM which, given the previously

taken action (e.g. move right) and the current input, predicts what to do next. Their results

are interesting as they correlate well with what is observed for children. Their model also

display a slow learning curve at the beginning and then has a vocabulary spurt such as what

is observed for children. The authors however observe a color bias when humans usually

display a shape bias (i.e. children tend to overgeneralise based on the shape of the object

and not so much on their colour). The authors explain this by the fact that colours and

shapes are perfectly balanced in their training data, while in real life shape terms are more

used than colour terms. Hence, shape bias seems only to depend on the input the child

receives and not by its perceptible environment.

Hence, RNN-based models are able to learn speech/image mapping as well as CNN-

based models. They also seem to be quite flexible models as they are able to quickly learn

the mapping between novel object/noun pairs. The fact that these models use RNN cells

instead of CNNs also make them more cognitively plausible, and hence constitute ideal

test-beds to simulate lexical acquisition.

2.3.1.4 Representation Analysis

Chrupa la et al. (2017a) tried to understand the representations learnt by their model.

First, they used a classifier to test if the embedding of a full spoken caption contains

information about the individual words of the caption, and at which layer this information

is the most reliably encoded. They found that not all layers are equally informative about

the presence of a word. Particularly, they found the lower layers of their architecture to

be the least informative, while the second-to-last was the most reliable. This suggests that

word-like units are progressively constructed as the information flows through the network,

and that a certain amount of computation is necessary so that information appears. A

similar observation was made more recently by Merkx et al. (2019).

Chrupa la et al. (2017a) also explored to what extent the learnt embeddings encoded

semantics. Their study reveal that the lower layers of their architecture encodes forms

while higher layers encode semantics. Surprisingly, their results show that the last layer

of their architecture as well as the final embedding encode the utterance semantics less

reliably than the previous layers. The authors explain this is the case because the final

embedding should correspond as closely as possible to the embedding of the paired image.

Hence, the network might tune the final vector according to the visual modality and discard

the information which is not useful in the speech signal.

Alishahi et al. (2017) explore to what extent such VGS model encoded phonology. Their

study shows that the network’s encodings approximately group the English phones by sound

class (plosives, fricatives, affricates, etc.). However, the grouping is not perfect and seems to

be done on the basis of acoustic factors (formants) rather than on deeper linguistic factors:

we could have expected vowel/consonant dichotomy, a clear voiced/unvoiced dichotomy

which is not the case here. This study also investigates the encoding of synonyms (e.g.

store/shop) and whether the network is able to distinguish them or not, and at which layer

precisely. Their results reveal that synonym discrimination is very low for the representa-

tions extracted from all recurrent layers except for the last and the final embedding. It thus

shows that form is encoded in the lower recurrent layers while meaning is encoded in the

top recurrent layer and the final embedding, making synonym detection much harder as no

(or little) information on form is present.

Harwath and colleagues also performed analysis on the representations learnt by their
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• an up close picture of an elephants [sic] trunk and eye.

• a baby elephant holding it’s [sic] trunk out on a dirt

ground.

• an elephant raising its truck [sic] with a tree in back-

ground.

• a close up of an elephant’s face showing eyelashes and

opening at end of trunk.

• an elephant pointing its trunk upward as it looks down.

Figure 2.7: Example image taken from MSCOCO (left) along with five descriptive captions

(right).16

model. Harwath et al. (2016) explored if their network reliably encoded several occurrences

of the same word, which are pronounced by different speakers. Their results reveal that

the network is able to cluster several occurrences of a given word together. This shows the

network was able to remove inter- and intra-speaker variability. Their analysis also suggests

that their network performs an implicit segmentation of the audio input into sub-units,

which was confirmed in a further study (Harwath & Glass 2017). Drexler & Glass (2017)

showed that some neurons were specifically activated by certain sequences of phonemes.

Interestingly, and similarly to the observation of Chrupa la et al. (2017a) and Alishahi et al.

(2017), the lower layers of the network are more concerned with form than with sense. They

observe this by clustering the activation extracted at different levels of the architecture and

show that the lower activations tend to cluster according to speaker identity while activation

from the upper layers cluster according to meaning. Harwath & Glass (2019) showed

that the second layer of their architecture was particularly sensitive to phone boundaries.

Similarly to Alishahi et al. (2017), their study shows that the representation learnt by the

network encodes coarse phonetic categories (fricatives, plosives, etc.).

2.3.1.5 Data Sets

Because the number of freely available data sets that feature both images and spoken

descriptions is limited, most of the aforementioned models (Harwath & Glass 2015, Chrupa la

et al. 2017a, Merkx et al. 2019) are trained on extensions of data sets initially created for

image vision purposes. The data sets these models use were conceived to train image

captioning models, that is, models that generate textual descriptions of images passed as

input. The main data sets used for this task are Flickr8k (Rashtchian et al. 2010, Hodosh

et al. 2013) and COCO (Lin et al. 2014) which feature images paired with 5 descriptive

captions written by humans (see Figure 2.7). These data sets naturally feature grounded

language, as each descriptive caption is paired to an image, which constitutes, to some

extent, knowledge of the physical world. As the captions were written by annotators upon

having seen the image, the image naturally reflects the communicative intent expressed in

the captions. An extensive presentation of the audio extension of these data sets is done in

Section 3.2 as we use these data sets in this thesis.

Recently, new data sets that closely capture what children see were introduced. Slone

et al. (2018) introduced a methodology to collect audio-visual data from children interacting

with objects using eye-tracking devices and head-mounted cameras. Such data can then be

used to train visually grounded speech or text models and study lexical acquisition. Tsutsui

et al. (2020) for example use such data to study word-object mapping. In their experiment,

16Image Credit: Josh More, Flickr, BY-NC-ND 2.0, MSCOCO ID 4477.

https://www.flickr.com/photos/guppiecat/9591155503/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://cocodataset.org/#explore?id=4477
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they used videos captured with a head-mounted camera that shows the perspective of the

child. They also used an eye tracker to pinpoint where the child was looking at each time

frame and simulate visual acuity by blurring the image except at the focal point. Hence,

the data is much more realistic than any other computer vision data set. The model used

in Tsutsui et al. (2020) is a supervised model which is trained to classify an image as

featuring (or not) a given object (e.g. bed, turtle, etc.). Their results show that word-

object association is more successful when using data with the visual perspective of the

child than with the visual perspective of the caregiver. Following a similar methodology, the

SEEDLingS project Bergelson & Aslin (2017)17 gathered data of child/caregiver interaction

using a head mounted camera and microphones. This data was used to train the model of

Räsänen & Khorrami (2019) presented above.

The results obtained by Tsutsui et al. (2020) and Räsänen & Khorrami (2019) highlight

the need for more realistic data sets if one wants to use computational simulations to

understand child language acquisition as advocated by Dupoux (2018). Indeed, data sets

such as Flickr8k or COCO only reflect the perspective of adults and not the perspective

a child could have of the same situation. Hence, models trained only on these data sets

might have sub-optimal results. However, realistic data sets are often not publicly available,

which explains why so few models are trained using realistic data.

2.3.2 Neural Models and Language Acquisition

2.3.2.1 Simulation or Modelling?

Most of the aforementioned models are inspired by child language acquisition, or at least

make an explicit link between the ultimate goal of their model and child language acqui-

sition. It seems reasonable to ask to what extent these models do model child language

acquisition or do simulate child language acquisition, or in fact do something else. This

distinction is important as it might influence the weight of the conclusions that will be

drawn.

We may try to answer this question by referring to Marr’s (Marr 1977) levels of in-

formation processing (see more specifically Marr 1983, p. 24). Marr distinguishes three

levels of information processing: the computational level, the algorithmic level, and the

implementation level. The computational level is concerned with the problem to be solved.

It defines what is the object of the computation (i.e. the input and the output) and why

those are the objects of the computation. This level also defines abstractly the constraints

that should be satisfied by the computational process. The second level, the algorithmic

level, is concerned more precisely with how the problem should be solved. Each step of

the computational process is precisely defined. Note that this level is different from the

computational level, as the computational level defines the task rather abstractly and what

constraints it should obey to, while the algorithmic level precisely defined how the compu-

tational process takes place. Indeed, “there may be many algorithms that implement the

same computation” Marr (1977). The final level, which is for us of little concern, is the

implementation level, which also defines how the computations are done, this time at the

physical level: are the computations supported by biological objects (i.e. real neurons) or

artificial objects (i.e. silicon chips).

The difference between simulation and modelling is concerned with the first two levels

only, that is the computational level and the algorithmic level. Rieder (2003, p. 818)

makes a difference between the two terms: “simulation conveying the action of imitating

reality and [the] model representing the vehicle”. Simulation is thus “the act of presenting

17https://bergelsonlab.com/seedlings/

https://bergelsonlab.com/seedlings/
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the appearance, or interacting with the behavior, of a system without the reality” while

modeling would be “the generation of a facsimile or representation of the real system”, the

latter being “physical, mathematical, procedural [i.e. algorithmic], or some combination”.18

Hence, referring to Marr’s hierarchy, the model is defined at the algorithmic level while

the simulation is defined at the computational level. There could well be several possible

models (i.e. several algorithms) possible that would generate the same simulation.

We believe that if one wants to model child language acquisition, the model should

be as close as possible to what humans do algorithmically, and for example incorporate

the same priors as humans, which is not the case with any of the aforementioned models.

Hence, even though they do simulate child language acquisition to some extent, and more

specifically lexical acquisition, they do not model child language acquisition. Nonetheless,

not implementing the same “vehicle” as humans does not preclude these implementations

to display similar patterns in the final simulation, hence making their implementation and

study worthwhile so as to test hypotheses.

2.3.2.2 Perfect Simulation and Groundedness

According to Dupoux (2018) (and others), a successful approach to study child language

acquisition using computational approaches should satisfy the following constraints:

construct[ing] scalable computational systems that can, when fed with realistic

input data, mimic language acquisition as it is observed in infants (Dupoux

2018)

If one wants to mimic language acquisition as it is observed in infants — which would

be what we define as a perfect simulation — the aforementioned models are not entirely

suitable. Indeed, the models we presented are inputted with an audio caption which they

have to learn to map to a paired image. Consequently, these models only incorporate the

perceptive abilities of a child but not its productive skills. Hence, this leads us to question

to what extent these models really are grounded.

Roy (2005) further defines grounding as “an interactive process of predictive control and

causal feedback.” and describes the ideal grounding model (which he calls a computational

semiotics framework) in a figure which we reproduced in Figure 2.8. The feedback loops —

language production, and physical action — enable the child to act on the physical world,

either by moving and gaining another view of what she is looking at, or by speaking to

the persons around her, which prompts a response back from them. Therefore, the ideal

grounded model should be both able of perception and production so as to really mimic

child language acquisition.

None of the models we presented do implement all the feed-back loops necessary to have

a fully-fledge grounded model. They all only implement a sub-set of it, and hence are not

able to entirely simulate child language acquisition. Indeed, the models of (Harwath et al.

2016, Chrupa la et al. 2017a, Merkx et al. 2019) only have a perceptive ability. While the

model of Räsänen & Khorrami (2019)19 is trained to reconstruct the input utterance —

and somehow incorporating productive skills — it does not allow for the model to actively

explore its environment, whereas the situation is opposite for the model of Hill et al. (2020).

However, despite not incorporating all the aspects of child language acquisition, they do

incorporate a sub-set of it, which is lexical acquisition. This process indeed implies building

18Rieder (2003) however notes that “another viewpoint is that the term modeling includes both the
construction of models and the manipulations of these models (the simulations)”.

19and other models such as Wang et al. (2020) and a model we have been working on during an internship
in Japan.
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Figure 2.8: Figure reproduced from Roy (2005). We annotated the figure according to the

models we presented, so as to reflect to what extent these models are fully-fledged grounded

models.

schemas about the world (i.e. neural representations) using a lingusitic input (i.e. audio

captions) and a non linguistic input (i.e. a visual context in the form of still images).

In this thesis, we will focus on studying lexical acquisition in RNN-based models, and

more specifically in a model similar to that of Chrupa la et al. (2017a). Note that the conclu-

sions we will be able to draw and the links we will make with lexical acquisition as observed

in children will necessarily be limited. We further describe this issue in Section 3.3.4.

2.4 Conclusion

Previous research shows that VGS models, be they CNN or RNN-based, are able to suc-

cessfully learn how to map a spoken stimulus to a visual stimulus. These works also reveal

that, despite having only been trained to minimise a distance between an image and its

spoken description so as to map both modalities accurately, these models have developed

deeper linguistics abilities. This is an interesting property, as these linguistic abilities only

appear as a by-product of the main task. This seems somehow similar to how children

learn. They indeed do not have an explicit linguistic task laid out before them, but their

linguistic abilities rather emerge as by-product of the interactions with the world around

them.

While these abilities were widely explored for CNN-based models, they were not for

RNN-based model. We thus aim in this thesis to better understand what linguistic abilities

VGS RNN-based models are able to develop. More specifically, we aim at answering the

following questions:

• Do RNN-based models highlight specific part(s) of the spoken input that are partic-

ularly relevant to predict the target image, such as what was shown for CNN-based

models? (Harwath & Glass 2017)

• If so, what specific parts of the input are highlighted (which specific word-forms, or

part-of-speech)?

• If they do highlight specific parts in the input, is this ability cross-linguistically valid,
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even if the model is trained with a language typologically different from English, say

Japanese?

• To what extent such linguistic abilities develop over time? Are VGS models able to

quickly acquire some linguistic abilities (i.e. with a relatively small amount of data)

or not?

• Previous research (Chrupa la et al. 2017a; Merkx et al. 2019) shows that the internal

representations of such network encode the presence of the individual words of the

spoken captions. This raises the question whether this behaviour is valid for all the

words of a given caption, or only specific words?

• If the presence of individual words are encoded in the internal representations of the

network, it means the network has learnt what constitutes a word and has stored this

information in its weights. This raises the question of how the network recognises (i.e.

activates) the representation of a given word based on an acoustic input.

• VGS models are trained with full unsegmented captions and obtain fair results. How-

ever, their textual counterparts (i.e. networks trained on written captions) do better.

This raises several questions, the main one being: if VGS networks were presented

with segmented captions, would they do better?
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3.1 Introduction

Children learn their native language in context. That is, raw speech alone is not sufficient for

them to acquire a language: language needs to be grounded in order for them to make sense

of what is being said. Grounding is necessary to map linguistics signs — signifier/signified

pairs — to their referents. Linguistic signs are not readily available objects that are to

be found in the real world but they also have to be constructed from it instead. Through

repeated exposure to referents in conjunction with linguistic signs, the child is able to build

form/meaning pairs. Grounding may thus occur through various sensory-motor experiences:

vision, touch, smell, taste, hearing, thermoception, social interactions, etc.

Neural architectures of Visually Grounded Speech (VGS), be they CNN-based or RNN-

based, have recently become popular as they enable to model complex interactions between

two modalities, namely speech and vision. Such architectures can be used to model child

language acquisition and more specifically, lexical acquisition. Indeed, these architectures

are trained to solve a speech-image retrieval task. This task involves identifying lexical

units that might be relevant in the spoken input, detecting which objects are present in

the image, and finally pairing the detected objects to the detected spoken lexical units.

Their task is very close to that of a child learning her mother tongue, who is surrounded

by a visually perceptible context and who tries to match parts of the acoustic input to

surrounding visible scenes.

In this chapter, we present the VGS architecture that is studied throughout this thesis.

We also present the data sets that are used to train such architecture and introduce a new
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data set in Japanese consisting of image paired to audio descriptive captions. Finally, we

mention the assumptions we make on language learning by using the particular architecture

we use in conjunction with the data sets we present.

3.2 Data

Deep learning architectures require large amounts of data in order to be trained effectively

and eventually converge. In our case, the architecture we train requires images that are

paired to spoken descriptions. While image recognition and captioning data sets are nu-

merous, only a few number of data sets featuring images paired with audio descriptions are

freely available. We here present the three data sets that are used in the experiments of

this thesis, two of them featuring synthetic speech (COCO and STAIR) and one featuring

real human speech (Flickr8k).

3.2.1 COCO and STAIR

Two of the data sets we use for our experiments are based on the Microsoft Common Objects

in Context (MSCOCO) data set (Lin et al. 2014).1 This data set, initially introduced for

computer vision purposes, consists of a set of images paired to five descriptive textual

captions. The images show scenes of everyday life which feature at least one instance of

the 80 target objects the data set was conceived around. The images comprising the data

set were gathered on Flickr,2 thus insuring a diversity of contexts and views in which the

80 object instances are presented. The captions were written by native English speakers

recruited on Amazon Mechanical Turk.

In order to have a data set consisting of images and spoken descriptions, Chrupa la et al.

(2017a) introduced the Synthetically Spoken COCO data set. It consists in a synthesised

version of the original MSCOCO captions using Google’s Text-to-Speech (TTS) system

(Chrupa la et al. 2017b). The audio captions were synthesised using one synthetic female

voice with an American accent. This resulted in 616,435 spoken captions for 123,287 images.

The original training, validation and test splits of Vendrov et al. (2016) were kept and consist

of 566,435, 25,000, and 25,000 captions respectively.3 From now on, this data set will be

referred to as COCO.

One of today’s pitfall of NLP and SP research is that most of the work is carried out

on mainstream languages4 that are, for most of them, Indo-European languages. This has

several impacts, the main one in our case being that it could bias our analysis. Indeed,

Indo-European languages are very close typologically. Consequently, it might be that the

patterns that are uncovered when analysing neural network might only stem from the fact

that the languages are typologically related and the analysis might miss the bigger picture.

Hence, in this thesis we introduce a speech/image data set in Japanese.

Our Japanese data set is based on the STAIR data set by Yoshikawa et al. (2017). Using

the same methodology as Lin et al. (2014), Yoshikawa et al. (2017) collected five captions

in Japanese for each image of the original MSCOCO data set. We chose this data set as

it has several advantages over other text/image data sets in other languages. First, it uses

the same set of images as the English data set (as opposed to the English-German Multi30k

data set (Elliott et al. 2016) which uses a different set of images). Second, the STAIR data

1https://cocodataset.org/#home
2https://www.flickr.com/
3Representing 551h, 25.27h, and 25.24h of speech respectively; with an average duration of

3.6s±0.8/caption
4In terms of political power of their native countries, not in terms of absolute number of speakers.

https://cocodataset.org/#home
https://www.flickr.com/
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set has captions for the whole original MSCOCO data set (as opposed to the Chinese version

(Li et al. 2019) which only has captions for a small subset of the original data set). Finally,

the captions were written by native Japanese speakers. They are original captions and are

not translations of the English captions (as opposed to the Japanese captions introduced

by Havard et al. (2017) which used computer generated translations). Following the same

methodology as Chrupa la et al. (2017a), we used Google’s TTS system to synthesise speech

for each of the Japanese captions (Havard et al. 2019b). In order to enable a fair comparison

between the models trained on the English version of the data set and those trained on the

Japanese version, we kept the exact same training, validation, and testing splits.5

From a typological point of view, Japanese is widely different from English, be it pho-

netically, phonologically (mora-based language), morphologically (agglutinative) or syntac-

tically (OV language, explicit function marking with particles). This will thus enable us

to test whether the behaviour of our architecture varies according to the language used for

training, and if so, what kind of language-specific strategies the resulting models develop.

3.2.2 FLICKR8k

The audio quality of both the COCO and STAIR data sets is very high as both feature

synthetic speech. However, as noted by Chrupa la et al. (2017a), the generated speech is

much clearer and simpler than real human speech: there is no inter-speaker variation, as only

one synthetic voice is used, and there is very few intra-speaker variation: two occurrences of

a word in the same context will be pronounced exactly the same. Also, real human speech is

characterised by false starts, repetitions, corrections, and hesitations which are not present

in synthetic speech. We therefore felt the need to validate our conclusion on real human

speech using the Flickr8k data set.

As for MSCOCO, the Flickr8k data set (Rashtchian et al. 2010, Hodosh et al. 2013)

was originally conceived for computer vision purposes. It contains 8,000 images, each paired

to five written descriptions written by humans also recruited on Amazon Mechanical Turk.

Harwath & Glass (2015) had each of the captions read by native English speakers, resulting

in 40,000 audio captions. As this data set features 183 different speakers, it is much more

challenging than the previous ones. The audio quality is also uneven from a caption to

another, some being very neatly recorded while other have a lot of background noise.

As Chrupa la et al. (2017a), who also used this data set in their original experiments, we

kept the original splits provided by Karpathy & Li (2017) resulting in a training, validation,

and testing set consisting of 30,000, 5,000 and 5,000 audio captions respectively.6 Needless

to say, we expect the results obtained using this data set to be lower than when using either

COCO or STAIR, as modelling real speech is notably harder than synthetic speech and

also because this data set is much smaller than the other two.

3.2.3 Data Format

Contrary to the VGS model of Harwath & Glass (2015) which used raw images and spectro-

grams, the architecture we used requires the data to be pre-processed before being inputted

to the network.

For COCO and STAIR, which both use the same set of images, we use image vectors

extracted from a VGG network (Simonyan & Zisserman 2015) trained on ImageNet. The

5Representing 729h, 32.53h, and 32.14h of speech respectively; with an average duration of
4.6s±1.2/caption

6Representing 34.39h, 5.76h, and 5.73h of speech respectively; with an average duration of
4.1s±2.0/caption
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features we used for our experiments are those provided by Vendrov et al. (2016) which are

averaged over 10 crops.7 For Flickr8k, we used the image vectors provided by Karpathy

& Li (2017),8 also extracted from a VGG network.

The vectors we use do not correspond to the activation of the last layer of the VGG

network,9 but we use the activations of the last fully connected layer of the VGG network.

Thus, the vectors computed at this layer are informative of the content of the image without

being restricted to a fixed number of objects to predict.

Both for COCO and Flickr8k we use the acoustic features provided by Chrupa la

et al. (2017b) which were extracted using Python Speech Features.10 The audio features for

COCO consist of 12 Mel-Frequency Cepstral Coefficients (MFCC, Picone 1993) and energy.

For Flickr8k, audio features consist of 12 MFCCs with deltas, delta-deltas and energy.

We extracted MFCC features for the synthetic STAIR data set using the same parameters

as for COCO.

3.2.4 Metadata

For each data set, we force-aligned the speech with its transcription at word and phone

level using the Maus forced aligner (Kisler et al. 2017).11 We also tagged each caption: we

used TreeTagger (Schmid 1997) for English part-of-speech (POS) tagging using the default

model and KyTea (Neubig et al. 2011) for Japanese POS-tagging using the default model.

Because both taggers use different tag sets, that the tag sets are unnecessarily fine-grained

(especially for English) and for comparison purposes, we converted each tag to its Universal

POS equivalent (Petrov et al. 2012) which uses a coarser tag set.

While mapping PennTreeBank tags to their Universal POS equivalent was rather

straightforward, it was not the case for KyTea’s POS tag set. KyTea’s analysis is closer to

that of a morphological tagger than to that of a coarse-grained POS tagger as exemplified

by the example thereafter:

Japanese バナナ が たくさん 積ま れ て いる

KyTea Tags banana/N ga/PRT takusan/ADV tsu/V ma/TAIL re/AUXV te/PRT i/V ru/TAIL

Gloss banana SUBJ many piled-up PASS
connective particle be/exist

PROG

Translation Lots of bananas are piled up

Table 3.1: Example sentence in Japanese taken from the test set.

For example, the verb “積ま” (base form 積まる) is split in two parts by KyTea, respec-

tively “積” (“tsu”, VERB)” and “ま” (“ma”, TAIL). For our analyses, we considered both

parts as forming a single token which we labelled as a VERB. Such overanalysis also occurs

for adjectives. In such cases, we considered the sequence ADJ+TAIL as forming only one

token of type ADJ.

Another example of KyTea’s over-segmentation and analysis is shown in Table 3.2 where

the word “work vehicle” is split in two parts. In our analysis, we considered such suffixes as

having the same POS as the preceding word.

7http://www.cs.toronto.edu/~vendrov/order/coco.zip
8https://cs.stanford.edu/people/karpathy/deepimagesent/flickr8k.zip
9which is a softmax over all the dimensions of the vector, which represents the probability that the

object represented at dimension n is present in the image.
10https://github.com/jameslyons/python_speech_features with default configuration.

Default configuration: window size: 25ms, window step: 10ms, pre-emphasis: 0.97
11Available at https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/WebMAUSBasic

(visited on February 28, 2020)

http://www.cs.toronto.edu/~vendrov/order/coco.zip
https://cs.stanford.edu/people/karpathy/deepimagesent/flickr8k.zip
https://github.com/jameslyons/python_speech_features
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/WebMAUSBasic
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Japanese 作業車

KyTea Tags sagyō/N sha/SUF

Gloss work vehicle

Translation work vehicle

Table 3.2: Example word oversegmented by KyTea

3.3 Architecture

The model we use for our experiments is based on that of Chrupa la et al. (2017a).12 The

modifications we made to the architecture are detailed in the following sections. This

implementation uses Python’s Theano deep learning library (James Bergstra et al. 2010). As

most VGS architectures (Harwath & Glass 2015, Kamper, Shakhnarovich & Livescu 2019,

Merkx et al. 2019), the architecture we use has two main components: an image encoder,

and a speech encoder (see Figure 3.1). Such models are trained to solve a speech/image

retrieval task: given a input spoken description, they retrieve the image that matches the

description the closest. To do so, such models project the image and its matching description

in a common vector space so that matching pairs lie close in the representation space while

mismatching pairs lie far apart. Therefore, the speech encoder and the image encoder have

to learn how to trasnform these two modalities appropriately so the resulting image vectors

and matching speech vector lie near in the final embedding space.

Figure 3.1: Architecture of the visually grounded speech models used in the following experi-

ments. The red boxes show the position of the two attention mechanisms used in the following

experiments.

12https://github.com/gchrupala/visually-grounded-speech

https://github.com/gchrupala/visually-grounded-speech
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3.3.1 Encoders

Contrary to Harwath & Glass (2015) and Harwath & Glass (2017) who use a full VGG

network as image encoder, the image encoder of our architecture simply consists of a linear

layer. Indeed, as previously mentioned (see 3.2.3), our architecture uses pre-computed VGG

vectors instead of raw images. The image encoder thus learns how to reduce the original

4096 dimensional input vector to a lower dimension. The resulting vector is then normalised

to the unit `2-norm.13 Note that it would still be possible to use full image encoder – such

as a VGG or ImageNet encoder. However, it would substantially lengthen the training time

and would be computationally heavier. As we wish to focus on the representation learnt for

speech, we deemed such modification unnecessary and kept the original architecture. Using

vector extracted from a trained neural network (such as done by Chrupa la et al. 2015 and

hence this thesis, or Merkx et al. (2019)) or using a the full pretrained network (such as

Harwath & Glass 2017) is a common practise known as transfer learning. Nonetheless, such

transfer learning is not necessary, and VGS models are still able to converge – sometimes

even better – when the image encoder is trained from scratch such as shown by Mortazavi

(2020).

The speech encoder consists of a 1D-convolutional layer that subsamples the input vec-

tors followed by five layers of Gated Recurrent Units (GRU) (Cho et al. 2014) with residual

connections (He et al. 2016). Contrary to the original architecture of Chrupa la et al. (2017a)

which has only one attention mechanism, we use two attention mechanisms (see section 3.3.3

for details): one after the first recurrent layer, and a second after the fifth recurrent layer.

The final vector produced by the speech encoder is an element-wise product of the vec-

tors produced by both attention mechanisms. This vector is then normalised to the unit

`2-norm.

Contrary to the original implementation that uses Recurrent Highway Units (RHN)

(Zilly et al. 2017), we decided to use GRUs as these cells are widely used by the research

community, and also because their behaviour is better understood. Furthermore, it is to

be noted we used unidirectional GRUs and not bidirectional GRUs. Indeed, unidirectional

GRUs process the input sequentially from left to right, thus respecting the temporal dimen-

sion of speech, whereas bidirectional GRUs process input both from left to right and from

right to left at the same time. We thus decided to use unidirectional GRUs as those are

more cognitively plausible as humans process speech from left to right and not both ends

at the same time.14

3.3.2 Contrastive Loss Function

The network is trained to minimise the following triplet loss function (as used by Chrupa la

et al. (2017a) and orignally proposed by Weinberger & Saul (2009)):

L(u, i, α) =
∑
u,i

(∑
u′

max[0, α+ d(~u,~i)− d(~u′,~i)] +
∑
i′

max[0, α+ d(~u,~i)− d(~u, ~i′)]

)
(3.1)

where ~u is an encoded utterance, ~i an encoded image, ~u′ and ~i′ are mismatching utterances

(respectively images) with respect to image i (respectively utterance u). This loss function

13that is x = x
‖x‖2

where `2-norm = ‖x‖2
∆
=

√∑d
i=1 x2

i so that all vector lie on a d-dimensional

hypersphere.
14Humans can also process the spoken input in reverse (in case one misunderstood what was said for

example). However, this happens once the spoken utterance has been processed once, thus the reverse
processing only takes place after, whereas for bidirectional RNNs, the input is processed from both ends,
independently and at the same time.
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encourages the network to minimise by a margin α the distance d(~u,~i) between the encoded

image ~i and the encoded utterance ~u belonging to matching image/utterance pairs while

making the distance greater for mismatching image/utterance pairs. The loss is computed

at batch level, that is, all the images inside a batch (except image i) are considered as

contrastive mismatching examples for utterance u, while all the other utterances (except

image u) inside the same batch serve as contrastive mismatching example for image i.15 In

our case, the distance d used is the cosine distance,16 defined as follows:

d(~u,~i)
∆
= 1− cosine similarity

∆
= 1− ~u ·~i

‖~u‖
∥∥∥~i∥∥∥ (3.2)

The domain of cosine similarity is [−1, 1], where cos(0◦) = 1; cos(90◦) = 0; and

cos(180◦) = −1. Hence, if two vectors are collinear (with the same sign), their cosine

similarity will be 1, and consequently the cosine distance will be 0. Consequently, orthog-

onal vectors will have a cosine distance of 1, and opposite vectors (collinear with different

signs) a cosine distance of 2. The loss function encourages the network to produce collinear

vectors for matching speech/image pairs.

Even though the batches are created by randomly selecting examples in the training

set, it could be that, in the same batch, two images are adequately described by the same

audio caption. Such pairs would act as mismatching examples even though in reality they

are not truly mismatching pairs. In practice, it does not impede learning.

Figure 3.2: Illustration of Cosine Similarity on a d-dimensional hypersphere between two

vectors.

This loss function is called contrastive as it does not only enable the model to learn

what makes matching pairs similar (e.g. that the acoustic unit [dOg] corresponds to the

furry animal in the picture), but also enable the model to learn what makes mismatching

pairs dissimilar (e.g. that the acoustic unit [dOg] does not corresponds to green background

in the picture; and the furry animal in the picture does not correspond to the acoustic unit

[gE~l]). Such loss function enables us to train our architecture fully unsupervisedly.

15Note that it is not the only possibility. Merkx et al. (2019), for example, uses importance sampling in
order to only select the hardest examples inside a batch and obtains better results.

16It should be noted that despite being referred to as a distance in the literature, it is not a true distance.
However, as in our case both vector A and B are `2-normed, it is proportional to the Euclidean distance.
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3.3.3 Attention Mechanism

One of the key components of this architecture is its attention mechanism (as presented in

Section 3.4). We remind to the reader that the attention mechanism computes the context

vector c as follows:

c =

T∑
t=1

αtht (3.3)

where T is the length of the sequence, ht is the hidden stated produced by a recurrent cell

at time step t, and αt is a learnable parameter. Recall that the attention mechanism learns

how to assign a weight αt to each input vector. The higher the weight, the more importance

is given to the vector in the final representation. In our case, high attention weights over

specific vectors means the network has paid more attention to specific portions of the input

signal.

We decided to use two attention mechanisms at two different levels of the network in

order to see if the network highlighted the same type of information at different layers or not.

The final vector is the dot product of the vectors computed by both attention mechanisms:

c =

(
T∑

t=1

αGRU1
t hGRU1

t

)
·

(
T∑

t=1

αGRU5
t hGRU5

t

)
(3.4)

where T it the total sequence length, hGRU1
t and hGRU5

t respectively represent the hidden

vector computed at time step t by the 1st and 5th layer, and αGRU1
t and αGRU5

t is the

attention weight computed respectively by the attention mechanism following the 1st and

the 5th recurrent layer. The final vector is normalised to the unit `2-norm.17

The idea of using more than one attention mechanism stemmed from the article by

Mattys et al. (2005) which shows that human attend to different cues when processing

speech in order to isolate words from the speech stream.18 The first attention mechanism we

use is placed after the first recurrent layer, hence very close to the acoustic information. The

network could thus use acoustic-related information (such as pitch) to highlight relevant

units. The second attention mechanism being higher in the architecture, we expect the

information to be more abstract, and thus we except the attention mechanism to highlight

units based on semantic cues. We hence aimed at checking if the neural network highlighted

different type of units by analysing the weights of the two attention mechanisms.

3.3.4 Assumptions in the Model19

In this thesis, we will draw analogies between the learning processes and strategies of a

neural network and those of a child learning her mother tongue. However, it is worth

mentioning that our comparisons will be limited as there are many differences between

how learning occurs in a machine and in a human. By design, the model and data we

use also makes certain (limiting) assumptions which we will review here. We may classify

the assumptions that are made in this thesis in three categories: assumptions on the data,

assumptions on the task, and assumptions on the computations.

17We also tried to do a simple sum to merge the two vectors computed by the two attention mechanisms,
but we found dot product to be more efficient.

18At the time we introduced this modification, using more than one attention mechanism was not a
common practice and was popularised by Vaswani et al. (2017). Using multiple levels of attention in a
model of VGS was then adopted by Merkx et al. (2019) who uses an attention mechanism after each
recurrent layer.

19Title borrowed from Roy & Pentland (2002).
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We first examine the limitations that ensue from the data set we use. Our data set is

biased by the nature of the data, as first, it only contains images that, by nature, are still

while the real world is not; and second, because these images were selected according to

a predefined set of objects they should depict, they do not reflect the distribution of the

objects children encounter in their daily life. Therefore, the salient parts of the images

are static objects and not (or rarely) actions the persons depicted in the images could

undertakeare undertaking. Thus, the descriptions are equally biased and mainly describe

the objects present in the image and not actions. Additionally, in our experiments every

picture is paired to a spoken description. This is a very strong assumption which occurs

quite rarely in real life. Indeed, even though children and adults tend to pay attention

to the same things in their environment (see Section 1.3.2) and thus tend to speak about

what is being attended to, it is often the case that adults refer to absent persons, objects,

or situations when they speak. In short, it is not because we speak in the context of a

particular situation that the discourse that is held necessarily refers to this situation, and

if it refers to the particular situation, it might not be a description of the situation.

Second, in our experiments we make assumptions on how learning occurs. This assump-

tion ensues from the task our neural network is trained to solve. The neural network we

use is trained to solve a very specific and well-defined task which is a speech-image retrieval

task: given a spoken description of an image, the network should retrieve the image that

matches the input description the closest. This task is artificial and does not correspond to

what humans do when they learn their language. Humans do not restlessly try to predict

a visual context from what they hear. Nonetheless, the core skill that solving such task

implies, that is, learning a mapping between a visual stimulus and an acoustic stimulus,

is a skill that children develop when they learn their language. However, this core skill is

just one of the many skills children need to develop to learn their language, but not the

only one. Even though visual stimuli play an important role in language learning, vision

is not the only way to ground speech: smell, touch, taste, social interactions, for example,

are equally (or even more) important than vision to learn a language (see Section 1.3.5.2).

Yet, for the particular neural network we study, vision will be the only modality used to

ground speech.

Finally, in this thesis we make assumptions on the memory capacities and the nature

of the computation done by humans. One assumption we make by using the model we use

is that image processing is decoupled from audio processing. Indeed, in our model, both

processes are done in parallel, but independently while in human cognition both visual and

audio processing is done jointly (see McGurk & MacDonald (1976) for an example). Thus,

in our model there is no true interaction between the visual stimuli and the audio stimuli.

The interaction between both modalities only occurs through the loss function. Moreover,

as our network uses pre-trained VGG vectors to represent the content of the images it

implies that one should first learn how to see before mapping what is visually perceived

to what is heard. It would thus imply that children have from the beginning on a clear

and robust categorical perception of their visual surroundings, which we know is not the

case: babies have a blurry vision and shorter sight angle, which implies they are not able

to perceive distant objects as clearly as adults.

The way the spoken input is processed by the network makes also false assumptions on

what we know of human speech processing. MFCC vectors are hand-engineered features

that aim at reproducing how speech is perceived by humans. However, the speech encoder

we use does not implement several innate priors which we know children have, such as

categorical (discrete) perception of speech. Our speech encoder must thus be considered as

a blank slate that needs to learn how to encode speech, which is not the case when children

are born.
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The loss function we use (presented in Section 3.3.2) also makes several (false) assump-

tions about the memory capacities of a child or humans. This function computes a loss

value at batch level. This implies a child would be able to compare a given situation to

several other situations, and would have, by doing so, stored in mind the exact sentence

and image representation of theses situations. This is of course impossible at a large scale.

Hence, the conclusions we draw should be understood in light of the presented assump-

tions and limitations. If vision – in form of still images – were to be the only modality used

to make sense of the surrounding speech, and that the surrounding speech always referred

to the visual context, what regularities should we expect children to have picked up?

3.4 Chapter Summary

In this chapter, we presented the VGS speech model we used and detailed the modifications

we made to the original architecture of Chrupa la et al. (2017a), and detailed each part of

our architecture. We also showed the assumptions using such a model implied and showed

the limitations of using the model and data we use in our conclusions.

We presented the data sets used to train such architectures (Flickr8k and COCO).

The true contribution we made in this chapter was introducing a new audio/image data set

based on the original text STAIR data set (Yoshikawa et al. 2017) that we created following

the same methodology as Chrupa la et al. (2017a). This data set enables us to compare the

performance of our network on two comparable corpora, the only changing factor being the

language: either English (COCO) or Japanese (STAIR). This data set, entitled Syntheti-

cally Spoken STAIR (Havard et al. 2019b), is openly available to the research community:

https://zenodo.org/record/1495070#.Xyv1dCgzZhE.

Finally, we also made available the POS tags and forced alignments of both the Sy-

thetically Spoken COCO and Synthetically Spoken STAIR data sets: https://github.

com/William-N-Havard/VGS-dataset-metadata so that the research community is able

to reproduce our results.

https://zenodo.org/record/1495070#.Xyv1dCgzZhE
https://github.com/William-N-Havard/VGS-dataset-metadata
https://github.com/William-N-Havard/VGS-dataset-metadata


Chapter 4

Attention in a Model of Visually

Grounded Speech

The work presented in this chapter is based on the article we published at ICASSP2019

Havard et al. (2019a). This work is inspired by prior work by Chrupa la et al. (2017a),

notably Figure 3 of the aforementioned article.
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4.1 Introduction

In the previous chapter, we presented the model of VGS we used and mentionned that this

model is trained to solve a speech-image retrieval task. The main hypothesis we have in

this thesis is that, in order to learn a reliable mapping between and image and its spoken

description, the model should implicitly learn to segment the spoken input into sub-units.

As the images used mainly figure objects and not actions, we hypothesise that the model

should implicitly learn to segment noun-like units.

In this chapter, we study the attention mechanisms of our models and analyse which

parts of the input signal are highlighted. Indeed, as previously mentioned, attention is a

tool the network is given so as to favour some part of the input signal over other. We
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hypothesise that our network uses this tool as a form of segmentation module in order to

highlight particularly relevant words in the spoken input.

We focus on analysing where attention is located, that is, we study which parts of the

input speech signal are more favourably highlighted than others. We first start by showing

that the learnt attention weights are not random and do highlight specific parts of the

speech signal. We then study how the distribution of the attention weights evolves over

time. Indeed, as the attention mechanism is a trainable component of our network, the

distribution of the attention weights evolves over time. Finally, we compare what is known

of language acquisition in children to the behaviour we observe in our models.

We believe the main originality of this chapter resides in the fact that the work we

present is the first to study the behaviour of attention in two typologically different lan-

guages: English and Japanese. Such methodology enables us to isolate the language general

behaviours from the language specific behaviours of our models.

4.2 Is Attention Explanation?

Before diving into the experiments of this chapter, we have to address an issue that was

recently raised regarding the reliability of studying the attention weights of a given model.

Jain & Wallace (2019) claim in their paper “Attention is not Explanation” that attention

weights do not provide a meaningful explanation of a neural network’s predictions. Notably,

they show it is possible to find alternative distributions of the attention weights while keep-

ing the predictions intact. They introduce two ways of doing so: the first one consists in

randomly shuffling the attention weights and the other one consists in constructing adver-

sarial attention weights whose distribution differs as widely as possible from the original

distribution while leaving the final prediction unchanged. They come to the conclusion

that because attention weights can be modified without changing the ouput of the neural

network they study, attention weights do not constitute a reliable source of information to

understand the predictions of a neural network.

Wiegreffe & Pinter (2019) in their response paper “Attention is not not Explanation”1

however mitigate the initial statement of Jain & Wallace (2019). They first state that

the goal of studying attention is not to explain all of a model’s behaviour by only looking

at its attention weights: “attention scores are used as providing an explanation; not the

explanation”. We totally subscribe to this view. Notably, they observe that the adverserially

computed attention weights usually perform worse than the initial attention weights showing

“the relationship between tokens and prediction [...] cannot be easily ‘hacked’ adversarially”.

The experiments of both papers suggest that manipulating the attention weights yields

uneven results depending on the data set, suggesting that in some cases it is legitimate to

consider attention weights as a form of explanation.

Even though the experimental settings of Jain & Wallace (2019) widely differ from ours

— their task is sentiment analysis while ours is speech-image retrieval, they use discrete

units as input whereas we use acoustic vectors that are continuous by nature, their output

consists in a binary classification while ours consists in predicting a vector in a continuous

space, etc. — we believe the issue they raised is important. In order to ascertain that the

attention weights in our models do constitute a form of explanation, we will perform a few

sanity checks. We will randomly shuffle the attention weights of both attention mechanisms.

If the scores obtained with shuffled weights are worse than those obtained with the original

weights, we will be able to conclude the original attention weights are useful for the models’

prediction and can thus constitute a good way of understanding our models’ behaviour.

1Emphasis added.
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4.3 Studying Attention

In this chapter, we aim at understanding the behaviour of the attention mechanisms of our

architecture. More specifically, we study which parts of the spoken input the model pays

attention to by analysing the attention weights. Our analyses focus on the following points:

• Which POS are highlighted;

• Which words are highlighted;

• Which parts of a given word are more specifically highlighted;

• How the distribution of the attention weights evolves over time.

After having trained models on either the English data set or the Japanese data set, we

encode each caption of the test set and extract the attention weights α (see 3.3.3) for both

attention mechanisms. Recall that the higher the weight is for a given vector, the more

importance this vector will have in the final representation. We then use a peak detection

algorithm2 to detect the local maxima (that from now on will be referred to as peaks) in the

attention weights. We considered as peaks local maxima that were at least 60% as high as

the highest detected peak. For the rest of this thesis, we will say that attention highlights

a specific part of a unit (POS, word, etc.) if there is a local maxima among the attention

weights assigned to the vectors that comprise this unit. A visualisation of how attention

weights are distributed on a specific caption is shown in Figure 4.1 where high attention

weights that are considered to be peaks are marked with a large orange marker.

In order to understand if the highlighted units are different from what chance would

predict, we could compare the proportions of peaks highlighting a given unit to the token

frequency of the same unit and see if both are close or not. However, doing so would

introduce a bias. Indeed, spoken units vary in length (nouns are typically longer than

determiners or prepositions), and tokens do not account for this length difference. In order

to have a baseline reference, we instead use random peaks as a baseline. For each caption,

we sample 10 × n random peaks, where n is the number of true detected peaks in the

caption. A random peak is thus a randomly selected time step in the vector sequence,

where each time step is equally likely to be selected as the other. We then compute word

and POS distribution under such random peaks. Doing so enables us to account for the

size difference of different words and enables us to estimate peak distribution if peaks were

to be randomly distributed.

For brievety reasons, from now on, the attention weights computed by the attention

mechanism following the first layer and fifth GRU layers will be referred to as “GRU1” and

“GRU5” respectively. Therefore, the sentence “GRU1 highlights more prepositions than

determiners” should be understood as “the attention mechanism computing the attention

weights for the hidden states of GRU1 highlights more prepositions than determiners”.

4.4 Experiments on Synthetic Speech: COCO & STAIR

4.4.1 Experimental Settings

We used the same experimental settings for both COCO and STAIR in order to enable a

fair comparison and used the same experimental parameters as Chrupa la et al. (2017a): a

1D convolution layer with 64 filters, a window size of 6 and a stride of 3, followed by 5

recurrent layers consisting of 512 units with residual connections. Attention dimension was

2Peak detection is done by taking the first-order difference of the input sequence. Python module
available at https://bitbucket.org/lucashnegri/peakutils/src/master/.

https://bitbucket.org/lucashnegri/peakutils/src/master/
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(a)

(b)

(c)

Figure 4.1: Example of the distribution of GRU5’s attention weights over (4.1a) an English

caption and (4.1b) Japanese caption along with (4.1c) reference picture.

set to 512, Adam optimiser with a initial learning rate of 0.0002, margin size α of 0.2. As in

the original implementation, we did not use any dropout as we found out that it hindered

performance. The model was trained for 15 epochs.

4.4.2 Results

In order to insure that our results were not due to chance, we trained five models, each with

a different seed. The results presented in Table 4.1 are an average (± standard deviation)

of the results obtained across the five models. Models are evaluated in terms of recall@k

(R@k) on a speech-image retrieval task. For each spoken query, the images are ranked from

the closest matching to the least matching image. R@k evaluates if the target image (i.e.

the image truly paired with the query caption) is ranked among the first k images. We

also report median rank r̃ which informs us at which rank the true images are ranked on

average.

Model R@1 R@5 R@10 r̃

English (COCO) 5.52± 0.31 18.26± 0.82 28.64± 1.15 27.4± 1.51

Japanese (STAIR) 5.3± 0.16 17.88± 0.41 27.92± 0.36 29.2± 0.44

English

(Chrupa la et al. 2017a)
11.1 31.0 44.4 13

Table 4.1: Recall at 1, 5, and 10 (in %) as well as median rank r̃ (±standard deviation)

on a speech-image retrieval task on the test set of our data sets (5k images) averaged over

five runs with different seeds. Models were selected according to the highest R@1 on the

validation set. We report the results obtained by Chrupa la et al. (2017a) with the original

RHN implementation. Chance R@k are 0.0002/0.001/0.002, chance median rank r̃ is 2500.5.

Overall, our results are worse than the results obtained by (Chrupa la et al. 2017a). This

is to be explained by the fact we swap the RHN cells for GRU cells. Even though our results
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are lower, they still remain much better than chance scores, showing the models we trained

did effectively learn to map an image with its spoken description.

4.4.3 Random Attention

The first question we need to answer before analysing the patterns of our attention mecha-

nisms is the following: is attention really useful? To do so, we either shuffled the attention

weights of both attention mechanisms at the same time, or only shuffled alternatively one

of the two so as to estimate the contribution of each in the final prediction. We did so

on the best trained model (selected on the validation set) of each of the five runs for both

COCO and STAIR. We present the results averaged over five runs (± standard deviation)

of randomly shuffling the attention weights in Table 4.2.

When the attention weights of both attention mechanisms are shuffled, we observe that

R@1 is barely above 0% showing the network is barely able to find the correct image given a

spoken query. It clearly shows that the learned attention weights do highlight very specific

parts in the spoken input, and that the highlighted parts are essential for the network to

correctly encode the spoken input.

We observe a different pattern when we only shuffle the weights of only one of the two

attention mechanisms. When we shuffle the attention weights for GRU1 but leave those

of GRU5 intact, we notice that the network obtains better results than when we do the

opposite. In both cases, the results are worse than when we leave the attention weights of

both attention mechanisms intact (see Table 4.1), but better than when both are shuffled.

This shows that the attention weights of GRU5 are more important than those of GRU1,

as shuffling the weights of the former has much more (negative) impact than shuffling the

weights of the latter.

Rand. Attn GRU1

Rand. Attn GRU5

Rand. Attn GRU1

True Attn GRU5

True Attn. GRU1

Rand Attn GRU5

COCO 0.32± 0.13 2.66± 1.17 1.02± 0.18

STAIR 0.20± 0.07 1.94± 0.65 1.00± 0.16

Table 4.2: Recall at 1 (averaged over 5 runs ± standard deviation) of trained models where

attention weights are randomly shuffled.

Thus, this experiments allows us to conclude that both attention mechanisms highlight

units that are useful for the networks’ predictions and hence, that analysing the attention

weights is a legitimate endeavour.

4.4.4 Highlighted POS

Following the methodology introduced in Section 4.3 we analyse which POS both attention

mechanisms highlight.

For COCO (Figure 4.2), we notice a large asymmetry in the POS that are highlighted

by GRU1 (Figure 4.2a) and GRU5 (Figure 4.2b). We observe that GRU5 highly focuses

on nouns (85.89% ± 0.38 of the peaks) and barely focuses on other POS. We also notice

that the proportion of highlighted nouns is very different from what randomness would

predict (47.15% ± 0.09), showing the network has learnt to detect and focus specifically

on nouns. The behaviour of GRU1 appears different and seems much closer to a random

behaviour: 52.37%± 29.46 peaks are located above nouns when randomness would predict

46.92% ± 0.15. However, this result is due to an outlier run (hence the large standard

deviation) where attention was concentrated at the end of the captions. Once this outlier
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(a) (b)

Figure 4.2: Bar plots showing the proportion of attention peaks above each POS for (4.2a)

GRU1 and (4.2b) GRU5 on the COCO data set. Real peaks are shown in blue and random

peaks are shown in red. The results are averaged over five runs with different seeds. Error

bars represent ± standard deviation.

removed, we also observe that a large part of the attention peaks are located above nouns

(65.46% ± 3.77). Other POS are less highlighted than what randomness would predict

(particularly for GRU5) showing the network has learnt to detect the most relevant type of

words (which correspond to nouns) and ignore the others.

(a) (b)

Figure 4.3: Bar plots showing the proportion of attention peaks above each POS for (4.3a)

GRU1 and (4.3b) GRU5 on the STAIR data set. Real peaks are shown in blue and random

peaks are shown in red. The results are averaged over five runs with different seeds. Error

bars represent ± standard deviation.

For STAIR (Figure 4.3), we also notice that there is a large difference between the

random peaks and the true attention peaks, showing that for Japanese also, the atten-

tion mechanisms highlight different units than what chance would predict. Both attention

mechanisms have learnt to focus on nouns: 71.33% ± 5.94 for GRU1 (Figure 4.3a) and
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63.30% ± 2.76 for GRU5 (Figure 4.3b) when randomness would predict 45%. We notice a

slight asymmetry in the highlighted POS between both attention mechanisms: while GRU5

focuses on particles 28.63%± 2.15 (where randomness would predict 15.88%± 0.07), GRU1

highlights such POS less than what randomness would predict and only focuses on nouns

instead. In Japanese, particules are clitics that may follow a noun, a verb, an adjective,

or even a sentence and that cover a wide range of functions: some have clear grammatical

functions and act as case markers such as “は” /wa/ (topic marker), “が” /ga/ (subject

marker), or “を” /o/ (object marker) while others are only interjections such as “ね” (tag

question, used to express surprise).

The study of which POS are highlighted by the attention mechanisms of the English and

Japanese models reveals that the models have adopted a specific behaviour according to

the language of the captions. In English, nouns are the most highlighted POS as they refer

to objects present in the image. It should be noted that verbs are not completely ignored

as there are some cases in which they are the only informative words of the captions. (e.g.

“a woman skiing down a track beside some trees” for which the action of “skiing” is the

main information). In Japanese however, the models took advantage of how the language

works by not only highlighting nouns, but by adopting a language-specific behaviour when

highlighting particles.

4.4.5 Highlighted Words

In this section, we take a closer look at which words are specifically highlighted by the best

model of each language. To do so, we compute the proportion of peaks that are above a

given word-form. This gives us a finer understanding of which specific words are the most

highlighted by each attention mechanism for each language. The 40 most highlighted words

for both COCO and STAIR are shown in Appendix B.

For COCO (Tables B.1 and B.2), we notice a slight difference in the words highlighted

by the two attention mechanisms. For GRU5, all of the top 10 highlighted words are nouns

referring to concrete objects in the pictures (train, tennis, toilet, baseball, etc.). For GRU1,

while there are a few nouns (table, train, baseball), the network also highlighted prepo-

sitions such as “in” and “of”. We believe the network did so because the words preceding

preposition are nouns that refer to the main object of the image (e.g. a stop sign in a town).

Surprisingly, GRU1’s attention mechanism also highlighted the determiner “a” even though

such word (or the preceding word) does not convey much information on the content of the

image.

When we take a closer look at which words are highlighted by the best STAIR model

(Tables B.3 and B.4), we notice that out of the top 10 highlighted words, respectively 3

and 4 words for GRU1 and GRU5 are particles. For GRU1 the most highlighted particles

are “ga” (subject marker), “no” (genitive marker) and “o” (object marker). For GRU5, the

most highlighted particles are“ga”, “no”, “o”and“ni” (locative marker). Even though GRU1

highlights less particles overall, the 3 most highlighted words remain particles. For GRU5,

we notice that the network has learnt to highlight what seems to be the most useful particle

overall which is the “ga” particle which is used to signal that the preceding word is the

subject of the sentence. Focusing on this particle is especially useful as there is a strong

probability that the preceding word refers to the main object of the image. For GRU5,

13.18% of the attention peaks are located above this “ga” particle, when randomness would

predict 3.45% of peaks on this word. This shows that the network has learnt to deliberately

focus on this particle. Otherwise, as for the models trained on the COCO data set, the other

words among the top 10 words refer to nouns which are concrete objects widely represented

in the corpus: skateboards, dogs, cats, etc.
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The strategy of the network to highlight particles is very interesting as, by design,

because of the uni-directional nature of the recurrent units used; and because particles are

suffixed words, the vectors that constitute a particle contain a lot of information concerning

the previous word. Consequently, highlighting particles is the optimal strategy.

4.4.6 Peak Position

In this section, we analyse specifically where the attention peaks are located above words.

To do so, we divided each word beneath a peak into four equal parts and we count the

percentage of peaks located above a given part. This allows us to analyse if attention waits

until the end of a word to peak (and thus attention peaks could be considered as word

boundary markers) or if attention tends to peak before the end of a word. Results are

shown in Table 4.3.

For the models trained on English, we observe that the attention peaks are not located

precisely at the end of a word, but are rather located between the middle and the end

of the highlighted words. This seems to indicate that the network does not focus on the

representation of the entire word, but rather on the vectors representing the first half or two

thirds of a word. We also observe that GRU1 and GRU5 have a different pattern: while

GRU5’s peaks clearly highlight word endings, attention peaks for GRU1 seem to highlight

in a higher proportion the middle of words.

For Japanese, we observe a similar behaviour as both GRU1 and GRU5’s peaks are

globally located above word endings. However, the situation is less as clear-cut as for

English as we notice that also a large part of the peaks are located above other word parts

and peak distribution tends to be more uniform. We explain this by the fact that attention

peaks over Japanese captions are located above particles. We suspect that particles are

able to trigger the attention mechanism as usually attention peaks are located at the very

beginning of the particle or at the boundary with the preceding word (see both peak of

Figure 4.1b located at the beginning of the “ni” and “ga” particles). Thus, the distribution

of the attention peaks above a given part of word tends to be more uniform.

Data Set Attn. Pos. Beginning Middle-Beginning Middle-End End

COCO
GRU1 17.47± 10.95 23.31± 11.65 44.46± 28.58 14.75± 7.25

GRU5 3.90± 0.48 14.11± 2.07 43.32± 1.73 38.66± 2.50

STAIR
GRU1 17.98± 4.29 25.03± 0.77 35.71± 2.18 21.28± 4.08

GRU5 20.69± 1.29 14.56± 1.02 22.07± 2.57 42.68± 0.87

Table 4.3: Dsitribution of the attention peaks above words for the COCO and STAIR data

sets.

The fact that attention mechanisms peak before the end of a word seems to show that

the models do not need to have access to the full version of the word in order to recognise

it, but rather peak as soon as the minimum information necessary to recognise it is present.

This matter is explored further in Chapter 5.

4.4.7 Longitudinal Study

In the previous sections, we showed that the models trained on the COCO and the STAIR

data sets used attention to highlight specific words in the captions. We showed that such

behaviour was learnt as the highlighted units differ widly from what would be expected if

attention peaks were randomly positionned. This begs however the question of when and

how quickly this behaviour is acquired. To explore this question, we regularly saved the
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(a)

(b)

Figure 4.4: Evolution across epochs of the proportion of peaks above a given POS for (4.4a)

COCO and (4.4b) STAIR. The percentage of peaks above a given POS is shown on the y-axis.

The number of training examples seen at any given point of the graph is shown on the bottom

x-axis. The point marking the last saving step of an epoch is shown on the top x-axis. Best

saving time step (selected on the validation set) is shown by a bold dotted red vectical line.

Results obtained with randomly initialised weights correspond to the first tick of both x-axes

labelled “0”.
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models during training so as to have a longitudinal vision of how learning takes place. To

do so, we saved the models’ weights every time the computed loss decreased by 4% of its

initial value. We also save the model at each epoch.

We will here focus on the learning pattern of the best model (out of the five trained

models),3 and more specifically we will analyse the learning pattern of GRU5 as we have

shown that, for both COCO and STAIR, this is the attention mechanism that has the

most interesting pattern.

We first notice that for both COCO (4.4a) and STAIR (4.4b) the savings steps belonging

to the first epoch represent a large part of the graph, showing the loss dropped quite fast

and that the most important learning phase is actually concentrated in the first epoch.

This impression is confirmed when we observe the evolution of the mean rank r̃ (reported

in Appendix D) which drops from 2504 to 42 at the end of the first epoch for COCO and

from 2529 to 44 for STAIR, while the minimum r̃ of 27 is obtained 7 epochs later for COCO

and the minimum r̃ of 29 for STAIR is obtained 6 epochs later.

For COCO, we notice a clear gap between the proportion of peaks highlighting nouns

when the model uses randomly initialised weights (first tick on the x-axis) and the next

saving steps where peaks above nouns have gone from 37.4% up to 55.9% after only 8

batches (256 examples). After 30 batches (960 examples), the proportion of nouns under

attention peaks already reaches 64.2%. This shows that it is possible for the network to

focus on very specific parts of the spoken input with very a few number examples. At

the end of the first epoch, the proportion of peaks above nouns does not evolve much and

remains steady, hovering at 85%. We may also notice that, while there are few peaks above

other POS during the first epoch, they are then barely highlighted past the first epoch.

Interestingly, it seems the network uses verbs at the beginning (as the proportion slightly

increases in the first part of the first epoch) and stop highlighting such units later on (−10pp

when we compare the proportion at the end of the second epoch with the middle of the

first epoch).

For STAIR, the behaviour of attention displays a very different pattern compared to

COCO and seems to be much more exploratory. Indeed, we notice that in the first steps of

the first epoch, there is a competition between POS, whereby attention highlights simulta-

neously nouns, verbs, and particles. In the first steps (up to 4.9k examples), the proportion

of peaks highlighting particles decreases while the proportion of verbs increases. Then, this

behaviour stops, and the number of peaks highlighting particles surpasses that of verbs. We

notice such behaviour on 4 out of the 5 models trained on Japanese. Therefore, it seems

that in order to properly converge, the models first need to highlight verbs, and then switch

to highlighting particles. Also, contrary to COCO where attention does not evolve much

after the first epoch, we observe the contrary for STAIR. Nevertheless, we also notice that

after the first epoch, the proportion of peaks above nouns decreases as much as the pro-

portion of peaks above particles increases. It shows the model is still adapting its decision

strategy after the first epoch and favours particles over nouns.

4.5 Experiments on Natural Speech: Flickr8k

In the previous sections, we presented the results we obtained on two data sets that con-

sist of synthetically spoken captions in English and in Japanese. We justified the use of

synthetically spoken captions as no bilingual data set is currently openly available.4 This

3All models have a similar behaviour.
4Bilingual speech-image data sets actually do exist and are based on the data set introduced by Harwath

et al. (2016): namely, a Hindi data set Harwath, Chuang & Glass (2018) and more recently a Japanese data
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enabled us to put forward that neural models adapt their learning strategy according to

the language used. However, using synthetic speech introduces a bias as it is clearer and

simpler than human speech. We thus wanted to test the network’s behaviour with real

human speech to see if we obtained consistent results.

4.5.1 Experimental Settings and Results

We trained the model on the Flickr8k data set which is much smaller than the COCO

and the STAIR data sets (see 3.2.2). This data set consists of real human speech, which

features multiple speakers. The quality of the recordings is very uneven (some have a very

high background noise), making this data set really challenging. We thus expect the results

to be very lower than those previously presented. However, as previously shown, only a few

examples are necessary for the network to highlight nouns. Consequently, if the network

has a similar behaviour on natural speech, we should also be able to observe this fact.

The network’s architecture used for this experiment is the same as in the previous

experiments. However, we used 1024 recurrent units instead of 512 as the acoustic vectors

are larger (13 MFCC coefficients, delta, and delta-deltas). This also leaves enough space

for the network to take into account and encode intra- and inter-speaker variation.

Model R@1 R@5 R@10 r̃

Our Models 2.08± 0.24 7.96± 0.57 12.94± 1.20 113± 9.08

Chrupa la et al. (2017a) 5.5 16.3 25.3 48

Table 4.4: Recall at 1, 5, and 10 (in %) as well as median rank r̃ (±standard deviation)

on a speech-image retrieval task on the test set of our data sets (1k images) averaged over

five runs with different seeds. Models were selected according to the highest R@1 on the

validation set. We report the results obtained by Chrupa la et al. (2017a) with the original

RHN implementation. Chance R@k are 0.001/0.005/0.01, chance median rank r̃ is 500.

As previously observed for the COCO data set, our results are lower than those reported

by Chrupa la et al. (2017a). The results we obtain are also worse than those obtained on

the COCO and STAIR data sets. This demonstrates how difficult it is for the network to

model the variation found in real speech. Nevertheless, even though the results are not

particularly good, they are still far better than chance, showing the network was still able

to make sense of the data and has learnt a reliable speech-to-image mapping.

4.5.2 Random Attention

As with the previous experiments, we shuffled the attention weights in order to understand

if they were meaningful or not. The results are presented in Table 4.5.

Here also, we notice that randomly shuffling the attention weights of both attention

mechanisms yields a R@1 which is much lower than the original R@1 (−1.54pp). Once

again, this shows that attention plays a vital role for the models. However, contrary to the

previous experiments, we notice that while randomly shuffling the attention weights of the

first attention mechanism really hurts the performance of the model, shuffling the attention

weights of the fifth attention mechanism results in a very small loss of the R@1. This

behaviour was observed across all 5 runs. We observed the opposite pattern for COCO

and STAIR.

set Ohishi et al. (2020). However, these data sets are not publicly available, and it was thus impossible to
use them.
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This tends to show that the majority of the models’ predictions rely on the context

vector computed by the first attention mechanism rather than that of the fifth.

Rand. Attn GRU1

Rand. Attn GRU5

Rand. Attn GRU1

True Attn GRU5

True Attn. GRU1

Rand Attn GRU5

Flickr8k 0.54± 0.82 0.44± 0.22 1.76± 0.22

Table 4.5: R@1 of models where attention weights are randomly shuffled.

4.5.3 Highlighted POS and Highlighted Words

(a) (b)

Figure 4.5: Bar plots showing the proportion of attention peaks above each POS for (4.3a)

GRU1 and (4.3b) GRU5 on the Flickr8k data set. Real peaks are shown in blue and random

peaks are shown in red. The results are averaged over five runs with different seeds. Error

bars represent ± standard deviation.

As for COCO, we notice that the models have learnt to focus primarily on nouns.

Both attention mechanisms highlight more nouns than what randomness would predict

(which would be 37%) also demonstrating the network deliberately focuses on nouns rather

than any other POS. However, in this case and contrary to COCO and STAIR, GRU1

highlighted more nouns overall (72.58%±4.94) than GRU5 (58.73%±5.30). The difference

in the R@1 we observed when shuffling the attention weights of GRU1 and GRU5 tends

to show that highlighting nouns is not sufficient, otherwise we should have observed much

of a gap in R@1. What thus seems most important is to highlight the key nouns in the

captions.

When looking more closely at which specific words are highlighted by each attention

mechanism of the best model (shown in Appendix B), we notice that the top 10 words

highlighted by GRU1 are only nouns referring to objects present in the images (dog, man,

girl, boy, dogs, people, woman, child, ball, water). These words are much more highlighted

than what randomness woud predict: for example, 13.49% of GRU1’s peaks highlight the

word “dog” when only 1.53% random peaks highlight the same word. This shows the model

has learnt to detect and highlight specific acoustic patterns corresponding to what most

likely is the main object of the image. GRU5 top 10 words also contain nouns, but also
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contain silences, prepositions and determiners (</s>, water, <sil>, beach, snow, grass,

shirt, street, a, in). Hence, this attention mechanism seems less specialised than the first

one. 5.29% of GRU5’s peak highlight the final silence of the caption, showing this attention

mechanism favours a representation that accounts for the whole sentence rather than specific

parts of the input signal.

4.5.4 Peak Position and Longitudinal Study

In this experiment also, we analysed above which word parts the attention peaks are specif-

ically located. We observe that peaks also tend to favour word endings. As for COCO

and STAIR, peaks are not located at the very end of the highlighted words, but seem to

be more concentrated in the middle as the highest proportions of peaks are to be found

in the middle-beginning and middle-end parts of words. Once again, these results tend to

show that the model does not need to have access to the full word in order to recognise it

and properly highlight it. We however notice for GRU5 that the peaks seem to be more

evenly distributed over word parts, which confirms our previous intuition that GRU5 is an

attention mechanism that highlights less specific units when dealing with natural speech.

Data Set Attn. Pos. Beginning Middle-Beginning Middle-End End

Flickr8k
GRU1 12.09± 2.28 31.18± 2.75 42.35± 2.00 14.38± 2.74

GRU5 18.72± 7.95 29.38± 5.03 31.05± 6.58 23.84± 2.98

Table 4.6: Repartition of the attention peaks above words for the Flickr8k data sets.

Figure 4.6 shows how the proportion of highlighted POS evolves over time. We will

focus on GRU1 as it is the most interpretable attention mechanism of the model. We

notice also the same phenomenon as what was observed for GRU5 for COCO and STAIR:

we observe a large gap between the proportion of peaks highlighting nouns when the model

uses randomly initialised weights (first tick on the x-axis) and the next saving steps, going

from 40% up to 60% two saving steps later (amounting to 2,912 seen examples). The

proportion of peaks highlighting other POS varies slightly in the first few steps and quickly

decreases and stabilises to its final value. This shows that the model identified nouns as

being useful to find the matching image. The proportion of peaks above nouns increases

steadily during the first epoch. Yet, contrary to COCO and STAIR where the proportion

did not evolve much after the first epoch, we notice here that the proportion of peaks above

nouns still evolves after the first epoch. Indeed, at the end of the first epoch, the proportion

of peaks above nouns is 72%, while it is 77% at the last epoch. This confirms that the model

needs more time in order to precisely identify all the important words in the caption. In our

opinion, this is to be explained by the fact that Flickr8k consists of real human speech.

Thus, the model needs more time in order to account for intra- and inter-speaker variation.

4.6 Relationship with Language Acquisition

One question we are drawn to ask at this point is the following: are there any commonalities

between what we know of language acquisition in children and the learning patterns we put

forward in the VGS models we studied?

The fact that our models preferably put forward nouns over all other POS seems coherent

to what is observed in the language acquisition literature. This phenomenon is commonly

referred to as the “noun bias”. Indeed, it has been found that children’s lexicon – both in

perception and production – contains a higher proportion of nouns than verbs or any other
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Figure 4.6: Evolution across epochs of the proportion of peaks above a given POS on the

Flickr8k data set.

POS. Gentner (1982) was the first to postulate that nouns are easier to learn than verbs.

She explains this by the fact that “words that refer to concepts are easy to learn because

the child has already formed object concepts, and need only match words and concepts”.

Our neural network is in such case as it uses pre-trained VGG vectors that encode which

objects are present or not in the image. Also, she explains that “noun bias” is also to be

explained by the fact that nouns represent objects that are “more salient, or more stable” as

opposed to verbs, whose main function is to describe action and therefore whose referent is

more evanescent. McDonough et al. (2011) use the notion of “imageability” to explain this

behaviour, by which nouns or verbs for which it is easier to recall a mental image are learnt

before other words. Even though a few studies have concluded to the absence of a “noun

bias”, recent studies (Bornstein et al. 2004) have shown that Gentner (1982) conclusions

hold true for a wide range of languages. Nevertheless, we should not lose sight of the fact

that the task our models solve is not the same as that of a child discovering the world and

that our data is biased. First, our data set consists of static images and not video clips.

Second, our data sets consist of images where there are more pictures depicting static scenes

than dynamic scenes, thus prompting the annotators to use more nouns than verbs. Given

these biases, it seems only natural that the network highlighted more nouns than verbs.

We suppose that VGS models that operated on video clips, such as that recently proposed

by Rouditchenko et al. (2020) should highlight a higher proportion of verbs.

We showed that our Japanese model develops a language-specific behaviour when it

mainly focuses on “ga” particles. Haryu & Kajikawa (2016) observed that Japanese children

(from 15 months on) also make use of “ga” to segment speech. Our models thus adopted

the same strategy as Japanese children to segment the adjacent noun. Haryu & Kajikawa

(2016) state that “it is clear that noun particles are not the earliest cue infants use for word

segmentation”. We do observe this type of pattern for our models where particles are barely
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used in the first learning steps, but become more and more highlighted, while nouns are

less prevalent than at the beginning.

Finally, is there any evidence that children pay more attention to word endings, such

as what we observed with attention peaks which tend to highlight last half of the words?

Such a proposal was made by Slobin (Ferguson & Slobin 1973, p. 191) in his list of Op-

erating Principles, where he states that children “Pay attention to the ends of words”. He

proposed this operating principle as he noticed that post-verbal and post-nominal grammat-

ical markers (and more generally every grammatical inflexion that is suffixed) are acquired

by children before other prefixed grammatical realisations. Clark (Slobin 1985, Chapter 7,

p. 761) notes that this principle “pertains to children who are trying to understand the lan-

guage being spoken around them” and does not apply to production. This principle seems

to also be used by our models, as they highlight word endings more than any other word

parts. However, this behaviour is more clearly illustrated by our Japanese model where

42.6% of GRU5’ peak are located at the end of the word. This is to be explained by the

fact that our models favour particles which are postposed.

4.7 Chapter Summary

In this chapter, we trained VGS models on two languages (English and Japanese) and we

analysed the behaviour of their attention mechanisms. Our analysis revealed that attention

adopted a language general behaviour by which it learns to detect and highlight specific

nouns in the spoken input. Our experiments thus confirm the intuition of Chrupa la et al.

(2017a) stating that “the speech model’s attention mechanism enables it to cherry pick key

fragments of [...] utterances”. But we also showed that attention could also adopt a specific

behaviour based on the language the network is processing, such as what we observed for

Japanese where attention mainly heavily relies on particles. Our analyses also revealed that

attention quickly learns to focus on nouns and that such behaviour does not require much

training data. With less than a thousand examples, attention already focuses on nouns

more than what randomness would predict.

Also, we observed that contrary to what we expected, attention does not peak at word

boundaries but rather peaks between the middle and the end of words. This shows that

attention does not need to have access to the full word. This however begs the question

of whether the implicit segmentation carried out by the network segments word into units

that correspond to written chunks, or rather segments words into shorter units. We explore

this question in the following chapter.

The fact we do not observe much difference between the two attention mechanisms (be

it between the highlighted POS, peak position, etc.) might only be a consequence of the

way both attented vectors are merged. Indeed, we used dot-product to merge both vectors

which equivalates an un-normalised cosine similarity. Indeed, recall that cosine similarity is
~u·~i
‖~u‖‖~i‖ , which normalises the dot-product by the norm of both vectors ‖~u‖

∥∥∥~i∥∥∥. This surely

explains why the difference in attention weights and peaks is minimal.

Finally, we tried to show the relationships that existed between what is known of lan-

guage acquisition in children and the behaviour of attention in a neural network and have

shown that some behaviours seem to be similar, the main one being that nouns are the

most favoured POS categories.





Chapter 5

Word Activation, Competition, and

Recognition

The work presented in this chapter is based on the article we published at CoNLL2019

Havard et al. (2019c).
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5.1 Introduction

In the previous chapter, we showed that VGS models were able to highlight specific words

in the speech stream using their attention mechanisms. This implies that the model is able

to recognise the words which are being highlighted. This aptitude raises a few questions

which we will try to answer in the present chapter.

First, we explore if the model is able to map an individual word to its visual referent.

That is, instead of presenting full captions to the network we present individual words. If

the network is able to retrieve images that feature the object the spoken word refers to,

it means the network was able to segment that word from the speech stream and thus

proceeded to an implict segmentation.
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Second, we explore if all the words that correspond to the main objects the COCO data

set was conceived around are equally well recognised by the network or not. We explore a

few factors that could influence speech/image mapping in the network.

Third, we examine how words are recognised by the network. The fact that specific

words can be highlighted implies that the model was able to store a certain representation

of the most important words of the data set and is able to activate these representations

when processing the spoken caption. To explore this question, we introduce a methodology

originating from psycholinguistics – the gating paradigm (Grosjean 1980) – and use it to

analyse the representation learned by our model. We put forward in the previous chapter

that the attention mechanisms need not see full words in order to highlight them, but

rather peaked before the end of the words. This seems to imply that the network is able

to recognise a specific word from a partial input. This is what we will study, namely how

much of a word the network needs to see in order to be able to recognise it and map it to

its visual referent.

Finally, we examine if there is a form of lexical competition when the network activates

words that start with the same sequence of phonemes, such as it was found in human speech

processing.

5.2 Word Recognition

The fact that VGS models are able to recognise individual words was already explored

by several studies. For instance, Chrupa la et al. (2017a) and more recenlty Merkx et al.

(2019) showed that the utterance embeddings computed by RNN-based VGS models contain

information about the presence of individual words. To do so, they simply encode a full

caption using the speech encoder of their network, encode an individual word, and train

a probing classifier to predict whether the individual word was present or not in the full

caption.

However, these studies did not show for what type of words this behaviour holds true

and if the model had learnt to map these individual words to their visual referents. Also,

none of these studies explored the factors that influence word recognition and why some

words seem to be fairly well recognised while other are not recognised at all. It should

be noted that Harwath & Glass (2017) and Harwath, Recasens, Suŕıs, Chuang, Torralba

& Glass (2018) already observed that CNN-based models can reliably map word-like units

to their corresponding visual reference. Therefore, we expect RNN-based VGS model to

display a similar behaviour.

5.2.1 Isolated Word Mapping

To explore if the model is able to map isolated words to their visual referent, we selected

a set of 80 words corresponding to the name of 80 object categories in the MSCOCO data

set.1 We expect our model to be very efficient with these specific words, as these refer to

the main objects featured in the COCO data set.

We generated speech signals for these 80 isolated words using Google’s TTS system and

then extracted MFCC features for each of the generated words. In this experiment, we

evaluate the ability of the model to rank the images so that at least one image in the first

top 10 images contains an object instance corresponding to the target word (Precision@10,

abbreviated P@10).2 Contrary to Chrupa la et al. (2017a) who uses Recall@k, we use

1List available at https://github.com/amikelive/coco-labels/blob/master/coco-labels-2014_2017.
txt

2Evaluation is performed on the test set containing 5000 images.

https://github.com/amikelive/coco-labels/blob/master/coco-labels-2014_2017.txt
https://github.com/amikelive/coco-labels/blob/master/coco-labels-2014_2017.txt
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Precision@k as there are several images that may be correctly associated to a single target

word: e.g. if the network is prompted with the word “elephant”, every image that features

an elephant should be considered a valid association. An important point to remember

is that at training time, the network was only given full captions and not isolated words.

Hence, if the network is able to retrieve images featuring instances of the target word, it

shows that implicit segmentation was carried out at training time.

Results are shown in Figure 5.1. 40 words out of the 80 target words have a P@10≥ 0.8.

This shows that the network is able to reliably map isolated words to their visual referent

despite never having seen them in isolation. Conversely, we also notice that 15 words are

not mapped to their visual referents.

Figure 5.1: Precision@10 for the 80 isolated words corresponding to MSCOCO categories.

A list of the 80 words used for this experiment along with P@10 for each of them

is available in Appendix D. Among the words that are the best recognised are animals

(elephant, zebra, sheep, giraffe) and objects (truck, bus, boat, airplane) that are very

frequent in our data set. Among the words that are the least well recognised are objects

(fork, knife, vase, toaster) or animals (mouse) that are quite infrequently mentionned in

the captions as they might be too small and not described by the annotators. However,

among the least well recognised words are also common objects (such as skis or frisbee) that

are very frequent in the captions. Manual exploration of the attention weights shows the

model also peaks on such words (see Appendix B where “skis” and “frisbee” are respectively

the 28th and 33rd most highlighted words). We explain this absence of recognition here by

a competition effect whereby the network favours the representation of other words. For

example, “skis”, “snow”, “hill” and “snowboard” frequently cooccur. The network might

thus favour the other words in order to learn a reliable image mapping instead of our target

word.

5.2.2 Factors Influencing Word Mapping

We explore here in more details the factors that could come at play in the recognition of

isolated words. We explore 2 types of factors: image-related factors and speech-related

factors. For the latter, we consider word frequency in the training set and length of the

speech signal. Concerning image related factors we consider object instance frequency in the

images of the training set, average number of neighbouring object instances, and average

area of each object. We decided to consider these variables as failures to map a spoken
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word to its visual referent could only be due to the fact that the pre-trained VGG network,

from which the image features are extracted, fails to detect and thus encode the presence

of a given object.

To model the relationship between all these variables, we fit a multiple linear regression

model with R where we try to predict Precision@10 using the previously mentioned factors.

Results are shown in Table 5.1. We notice that the only effect that plays a significant role

in word recognition is the frequency of the word in the training set. The positive effect

shows that the more frequent the word is in the training set, the better it is recognised.

Word length has a mild positive effect which tends to show that longer words are better

recognised than shorter words. Object frequency and number of neighbouring object have

no effect. Object size seems to play a mild effect also. This seems to be coherent with

the fact that more frequent words are better recognised, as we expect objects that occupy

a large place in picture to be more often described than smaller objects. Consequently,

such results seem to confirm our previously exposed hypothesis stating that words denoting

small objects are often not described.

Factors Estimate p-value

Images

# Neighbouring Objects -0.054178 0.123

Object Size +0.010932 0.048

Object Frequency -0.006001 0.421

Speech
Word Frequency +0.165963 0.007

Word Length +0.384533 0.090

Table 5.1: Factors influencing word recognition performance in our model.

Our results thus show that individual words are indeed reliably mapped to their visual

referent by the network. The main factor of success in this task being the frequency of the

target words in the caption as well as the size of the objects in the image. Hence, words

that are very frequent and refer to large objects are better recognised than others.

5.3 Word Activation

In this section we describe how individual words are activated by the network. To do so, we

perform an ablation experiment (similar to that of Grosjean (1980) which was conducted

on humans) where the neural model is inputted with only a truncated version of the 80

target words. Such a method is also called gating in the psycholinguistic literature.

5.3.1 Gating Paradigm

The gating paradigm was introduced by Grosjean (1980) and involves the following proce-

dure:

The gating paradigm involves the repeated presentation of a spoken stimulus

(in this case, a word) such that its duration from onset is increased with each

successive presentation. This is done until the entire word has been presented.

After each presentation (or gate), subjects are asked to write down the word

being presented and to rate their confidence in each guess. (Cotton & Grosjean

1984)

In our case, it means the neural model is fed with truncated versions of a given target

word, each truncated version comprising a larger part of the target word. Contrary to
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Grosjean (1980) who only proceeds to a truncation that preserves the beginning of a word,

we also proceed to a truncation that only preverses the end of a word. That is, in our case,

truncation is either done left to right (the model only has access to the end of the word)

or right to left (the model only has access to the beginning of the word). Also, contrary

to the original setting where experimenters are asked to write the target word after each

successive presentation, we evaluate the models’ ability to rank the images so that the top

k images contain instances of the target object.3 The cohort model, in its initial version

(Marslen-Wilson 1987b), stipulates that word onset plays a crucial role in word recognition.

The aim of this experiment is to test whether word onset plays a role in word recognition

for the network or not. If it is the case, we expect the network to fail to recover images of

the target word if the word is truncated left to right, but not — or less — when the word

is truncated right to left, hence motivating the truncation from both ends.

Truncation is operated on the MFCC vectors computed for each individual word, mean-

ing that MFCC vectors are iteratively removed either from the beginning of the word or

the end of the word, but not from both sides at the same time. Each truncated version of

the word is then fed to the speech encoder which outputs an embedding vector. As in our

previous experiment, the model’s performance is evaluated in terms of P@10.

5.3.2 Effect of Gating

(a) (b)

Figure 5.2: 5.2a Evolution of Precision@10 averaged over 80 test words as a function of the

percentage of MFCC vectors removed for each word. 5.2b Evolution of Precision@10 for each

ablation step of the word “zebra”, with time-aligned phonemic transcription /zi:bK2/ at the

bottom. “SIL” signals silences. For both 5.2a and 5.2b, blue lines show P@10 when ablation

is carried out left to right, meaning that at any given part on the blue curve, the model has

only had access to the rightmost part of the word. (e.g. /i:bK2/ without initial /z/). Red line

displays scores when ablation was carried out right to left, meaning that at any given part on

the red curve, model has only had access to the leftmost part of the word. (e.g. /zi:/ without

the final /bK2/).

3In fact, it is impossible to reproduce the original experimental settings with our model as it does not
predict discrete labels. It would be however possible to use the original settings with a network trained to
predict word labels, such as an Automatic Speech Recognition model.
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Figure 5.2b shows the evolution of P@10 for one of the target words (“zebra”). When

MFCC vectors corresponding to the first phoneme are removed (/z/), precision plummets

from 1 to 0. However, when MFCC vectors belonging to the end of the word are removed,

precision plateaus at 1 until /i:/ is reached and then plunges to 0. This shows the model

successfully retrieved pictures of zebras when only prompted with /zi:b/ but not when

prompted with /i:bK2/ even though the latter comprises a longer part of the target word. It

also seems that little acoustic differences may yield very different representation as depicted

by the red trough, were the only difference with the previous two points being the addition

or deletion of an MFCC vector.

Figure 5.2a shows evolution of P@10 averaged over the 80 test words. As can be seen

from the graph, precision evolves differently according to which part of the word was trun-

cated. When the target words are truncated left to right, precision drops quicker than

when truncated right to left. These results show that the model is robust to truncation

when it is carried out right to left but not when it is carried out left to right: when the

initial phonemes of the words are removed, the network fails to retrieve the target image,

but when only presented with the initial phonemes, the network is globally able to retrieve

images of the target word. These results suggest that the model does not rely on a vague

acoustic pattern to activate the semantic representation of a given concept, but needs to

have access to the first phonemes in order to yield an appropriate representation.

5.3.3 Activated Pseudo-Words

Such ablation experiments also enable us to infer on what units the network relies on to

make its predictions. Figure 5.3 for example allows us to see what are the pseudo-words

that were internalised by the network for the word “tennis racket”. When truncation is

done left to right (blue curve), we notice that at the beginning precision is high (1.0), then

reaches 0 when only /EnIsrækIt/ is left, but suddenly increases up to 1 when the only part

left is /rækIt/. This suggests that the network mapped both “tennis racket” as a whole and

“racket” as referring to the same object.

Figure 5.3b shows that removing the first part of the word “fire hydrant” has nearly no

effect on P@10. Indeed, even if a large part of the word “fire” is removed, P@10 remains

high. Yet, once the /Ç/ is reached, P@10 abruptly decreases. We also notice it is possible

to remove a large part of the word “hydrant” up to the /d/ without hurting much the

performances of the network. This tends to show that only a sub-part of the word is

necessary for the network to produce the appropriate representation and not the word “fire

hydrant” as a whole. It thus seems that the minimal units that are necessary to activate

the word fire hydrant are /ÇhaI/. Therefore, we need to take caution when stating that

the network has isolated words, as the words internalised by the network might not always

match the human gold reference.

Finally, Figure 5.2b shows that when only prompted with /zi:b/ the network manages

to find pictures of zebras. This suggests that only the first part of the word is necessary to

activate the representation of “zebra”. This might be due to the fact that the vocabulary

the network has to deal with is very limited and thus the network is confident from that

point on that the rest of the word will refer to a zebra. This is similar to what happens in

French with the pseudo-word “coquelic” which activates the word “coquelicot” (poppy) as

this is the only word in French which starts with “coquelic”.

This experiment hence shows that the pseudo-words internalised by the network do not

necessarily correspond to a graphic word. It also shows that only sub-parts of a given word

are necessary for the network to activate the target representation.
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(a)
(b)

Figure 5.3: Evolution of P@10 for each ablation step of the word 5.3a “tennis racket” and 5.3b

“fire hydrant” with time aligned phonemic transcription at the bottom

5.3.4 Gradual or Abrupt Activation?

As previously mentioned, little acoustic differences yield wide differences in the final rep-

resentation. Thus, in this section we analyse how representation is being constructed over

time and explore if some MFCC vectors play a more important role than others in the

activation of the final representation.

We progressively let the network see more and more of the MFCC vectors composing

the word, iteratively feeding it with MFCC vectors starting from the beginning of the word

until the network has had access to the full word. We then compute the cosine similarity

between the embedding computed for each of the truncated version of the word and the

embedding corresponding to the full word. The closer the cosine similarity is to 1, the more

similar the two representations are. Thus, if each MFCC vector equally contributes to the

final representation of the word, we expect cosine similarity to evolve linearly. However,

if some MFCC vectors have a determining factor in the final representation, we expect

cosine similarity to evolve in steps rather than linearly. To detect steps that could occur

in the evolution of cosine similarity, we approximate its derivative by computing first order

difference. High steps should thus translate into peaks (e.g. Figure 5.4b). We compute the

evolution of cosine similarity for the 80 target words encoded with the best trained model

(e.g. Figure 5.4c) and also consider a baseline evolution by encoding the 80 target words

with an untrained model (e.g. Figure 5.4a).4 To avoid micro-steps of yielding peaks and

hence creating noise, we smooth cosine evolution curves with a gaussian filter. We consider

peaks higher than 0.025 as translating a high step in the evolution of cosine similarity.

On average, they are 1.25 peaks per word for the trained model against 0.1 peak per word

that are above our 0.025 threshold for our baseline condition (untrained model), showing

that cosine evolution is linear in the latter, but not in the former. Consequently, in our

baseline condition (untrained model), each MFCC vector equally contributes to the final

representation, whereas in our trained model some MFCC vectors are more decisive for

4Thus consisting only of randomly initialised weights.
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the final representation than others. Indeed, some MFCC vectors trigger a high step in

the cosine evolution suggesting that the embedding suddenly gets closer to its final value.

Figure 5.4c shows the evolution of the cosine similarity for the word“elephant”. As it can be

seen, cosine similarity does not tend linearly towards 1, but rather evolves in steps. Adding

the MFCC vectors corresponding to the transition from /I/ to /f/ triggers a large difference

in the embedding as the cosine similarity suddenly jumps to a higher value, showing it is

getting closer to its final representation. After the vectors of /f/ are added, the evolution

of cosine similarity is modest, suggesting the final part of the words plays a less important

role than the initial part in the final representation of the word.

(a) (b) (c)

Figure 5.4: Figure 5.4a shows evolution of the cosine similarity between the embeddings

produced for each truncated version of the target word and the embedding for the full word

using a model with randomly initialised weights. Figure 5.4c shows the same measure with the

embeddings produced by a trained model. Figure 5.4b shows peaks indicating the inflection

points of curve 5.4a (green) and 5.4c (red). For our experiments, we only considered inflection

point to be significant if the resulting peak was higher than 0.025 (blue line).

We conclude from this experiment that the network needs not see the full word in order

to activate the representation that enables images featuring this very word to be retrieved.

More specifically, we put forward that the network needs to have access to the first part of

the target word in order to activate the correct representation and that some word parts

are more crucial than other in order to compute the appropriate representation.

5.4 Word Competition

Some psycholinguistic models (see Section 1.4) assume that the first phoneme of a word

activates all the words starting by the same phoneme. The word that the speaker wants to

pronounce and gradually utters is called the “target” word. The words that are activated

but which do not correspond to the target word are called “competitors”. As the listener

perceives more and more of the target word, some competitors are deactivated. This means

that they are not considered as the potential word any more, as they do not match what is

being perceived.5

For example, let us consider that a speaker has started to utter the following sentence

“I have a ...” and the following lexicon that only consists of three words that start with a

/b/: /beIbi/ (baby), /beIsm@nt/ (basement), and /beIsbO:l bæt/ (baseball bat). The first

sound of last word of the sentence all start with /b/. Thus, all words would be activated

and at this point the sentence could as well be “I have a baby”, “I have a basement” or “I

5Note that phonetic factors are not the only factors taken into account to deactivate a set competitors,
morpho-syntactic factors also come at play.
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have a baseball bat”. Once /beIs/ is reached, “baby” would not be considered a competitor

any more, and once /beIsb/ is reached the only word activated would be “baseball bat” as it

is the only word whose beginning corresponds to the perceived sounds. The speaker would

know from that point on that the sentence is “I have a baseball bat”.

5.4.1 Methodology

We tested if the network displays such lexical competition patterns. To do so, we selected a

set of 57 word pairs that could potentially compete between one another. We selected the

word pairs according to the following criteria:

• Words should at least appear 500 times or more in the captions of the training set, so

that the network would have been able to learn a mapping between these words and

their referent;

• Words forming a pair should at least start with the same phoneme;6

• Words should not be synonyms and clearly refer to a different visual objects (thus

excluding pairs such as “motorcycle” and “motorbike”).

Out of these 53 word pairs, we assessed if each word of each word pair was reliably

mapped to a visual referent. We considered it was the case if at least 5 of the first 50

ranked images contained an instance of this word. Finally, out of the initial 57 word pairs,

only 12 remained.7

For each word pair, we selected one of the word which we consider as the target word,

progressively let the network see more and more of the MFCC vectors composing this word.

At each time step, the network produces an embedding, which we use to rank the images

from the closest matching image to the least matching image.8 Then, for the 50 closest

matching images, we check if at least one of the captions contains either the target word

or the competitor. We have to use the captions to check if the concept is present in the

images, as among the word pairs, most contain words that do not belong to the 80 object

categories of MSCOCO. We thus have to rely on the caption to check whether the object

is present in the image or not.

As the competitor and the target word start with the same phonemes, we expect the

network to produce an embedding that activates both the competitor and the target word

at the beginning and then, when the acoustic signal does not match the competitor any

more, we expect the network to be able to activate only the target word. For each word

pair, each word is alternatively used as the target word.

5.4.2 Results

We present the competition plots of three specific word pairs as they are the most repre-

sentative of the patterns observed with the other word pairs.

5.4.2.1 Cat/Cattle: mild competition

Figure 5.5 shows an example of competition plots between two words: “cat” and “cattle”.

In Figure 5.5a, the network is prompted with iteratively longer spans of the word “cat”.

6Phonemic transcription found in CMU Pronouncing Dictionary was used
7wii/window, cat/cattle, cat/cow, cat/catcher, cattle/catcher, floor/flower, fridge/frisbee, kid/kitchen,

player/plate, tree/train, meat/meter, and train/truck.
8That is, we compute the cosine distance between the embedding produced at time step t and all the

images (5000) of our collection.
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(a) (b)

Figure 5.5: Illustration of lexical competition between “cat” and “cattle”. 5.5a shows competi-

tion plots when the word “cat” is used as target. 5.5b shows competition plots when the word

“cattle” is used as target. Numbers in 1st x-axis correspond to the number of MFCC frames of

the target word; 2nd x-axis corresponds to time-aligned phonemic transcription of the target

word; y-axis shows number of images for which at least one caption (out of 5) contains the

target or competitor word. Vertical colour bars are projection of phoneme boundaries of the

target word. In order to have smoother curves, we used a gaussian blur with a standard

deviation of 2.

We notice that this word only activates the representation of “cat” as out the 50 images,

49 contain a caption with the word “cat” and none of them with the word “cattle”. Figure

5.5b shows what happens when we use the word “cattle” as target, where the network is

prompted with iteratively longer spans of the word“cattle”. We notice that at the beginning,

the representation which is activated is that of “cat” as once again, more than 45 of the top

50 images have a caption that contains the word “cat”. However, at the end of [æ] and the

beginning of [R], we notice that the number of images with a cat strongly decreases and the

number of images with cattle increases. Once [2] is reached, no more picture of cats are

retrieved, showing this representation was totally deactivated. This example is interesting

as it seems the network was able to notice fine acoustic variation such as [t]/[R] in order to

recognise the target word.

5.4.2.2 Train/Truck: strong competition

Figure 5.6 shows the competition plots between “train” and “truck”. Contrary to the previ-

ous example, we notice a clear competition between “train” and “truck” when “truck” is used

as target. We observe that both representations are activated at the same time (after [r]).

However, we notice that the magnitude of the activation is very different as more pictures

of trains are retrieved than pictures of trucks. We also notice that even though the network

activated the representation of “train” when prompted with “truck”, there are less pictures

of “train” than when the network is prompted with the word “train”. We also observe that

at first the activation is very similar (both blue curves start to increase at the beginning

of [r]), but once [2] is reached, the curve is less steep in Figure 5.6b than in Figure 5.6a,

showing the network notice it is not the canonical pronunciation of the word “train”. It is

only at the very end of the word that the representation of “train” deactivates and that the

network retrieves pictures of trucks.
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(a) (b)

Figure 5.6: Illustration of lexical competition between “train” and “truck”. 5.6a shows com-

petition plots when the word “train” is used as target. 5.6b shows competition plots when the

word “truck” is used as target.

5.4.2.3 Frigde/Frisbee: no competition

(a) (b)

Figure 5.7: Illustration of lexical competition between “fridge” and “frisbee”. 5.7a shows

competition plots when the word “fridge” is used as target. 5.7b shows competition plots

when the word “frisbee” is used as target.

Figure 5.7 shows the competition (or lack thereof) between “fridge” and “frisbee”. We

observe that even though both words start with the same sequence of phonemes, there is no

competition between them. “frigde” only activates pictures of fridges and none of “frisbee”

and vice-versa. In both cases, the network needs to have access to large part of the word

in order to retrieve the target word.
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5.4.3 Is there any Competition?

(revised) cohort Marslen-Wilson & Welsh (1978), Marslen-Wilson (1987b) and trace

McClelland & Elman (1986b) both state that competing words are all activated at the same

time, that is when the first phoneme is perceived. Even though some examples conform

to this statement – such as that presented in Figure 5.6b – it is not the case of all word

pairs. In some cases, there is only little competition as the representation of both words

is activated sequentially (as in Figure 5.5) and in some other cases, there is literally no

competition between the two words (such as 5.7) despite both words starting in a similar

way.9 Therefore, the behaviour of the network appears to be very unclear. It seems however

that the network activates the word that is the most common. For example, there are many

more pictures of trains than pictures where trucks constitute the main object of the image.

Thus, the network seems to activate preferentially the representation of the object that is

the most frequent in the images and captions.

5.5 Replication on Natural Speech

We wanted to replicate our initial experiments on natural speech using the Flickr8k data

set. Nevertheless, we were not able to do so as this was done before we had the time to

do it ourselves. Indeed, Scholten et al. (2020) followed the methodology we introduced in

our article Havard et al. (2019c) and applied it to analyse word activation and recognition

in the VGS model of Merkx et al. (2019). The results they obtain confirm the trends we

presented in section 5.2: they also observe that not all words are equally well recognised

when presented in isolation, and report a median P@10 of 0.4 (when we report a median

P@10 of 0.8). Such difference is to be expected as natural speech is harder to model

than synthetic speech. Contrary to us, where we observed that longer words are better

recognised than shorter words, they observe the reverse pattern. However, they also found

that frequency had a positive effect such as we did, that is, words that occur more frequently

in the training set are those that are recognised better in isolation.

In their study, they also find that word activation operates through a process of com-

petition. Indeed, they show that word recognition is harder for words that have a high

number of similar-sounding words – that is, words which start with the same sequence of

phonemes.

Their study also puts forward that word recognition is possible even with a partial input,

such as we did (see the “cat” example in Figure 5.5a, where /k/ only is enough to activate

the representation of the full word). Finally, their study also show that word recognition

also occurs in steps (which they call “leaps”) where P@10 abruptly jumps from 0 to 1.

5.6 Chapter Summary

In this chapter, we showed that a VGS model is able to map individual words to their visual

referents despite having been trained on full captions. van Zon (1997, p. 8) notes that in

the COHORT and TRACE models “segmentation is the result of recognition”. We believe

that indiviual word recognition shows that the model implicitly segmented its inputs into

subunits, and propose the converse formulation “recognition is proof of segmentation”. An

important point we made in this chapter is however that the resulting segmentation might

not always correspond to the gold standard.

9However, it could be that those two words compete with other words, but not specifically these two.
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In this chapter, we introduced several methodologies to analyse how the representation

of individual words is built over time. Notably, we adapted the gating paradigm of Grosjean

(1980) so as to analyse how words are activated by the network. We observed that word

representation is not built linearly by the network and that recognition may occur with a

partial input, thus corroborating that “recognition often occurs before the acoustic offset of

the word” (van Zon 1997, p. 8). We showed that in order to be able to activate the correct

representation of a given word, the network needs to have access to the first phonemes of this

word, as when they are removed, the network is unable to activate the correct representation.

Thus, when word recognition is observed with a partial input, it is only when the partial

input encompasses the first part of the word, but not when it only encompasses the final

part of the word.

Finally, we tried to see if word activation was done through a process of word competi-

tion, such as what was postulated in human word recognition. We observed mixed results,

as we did observe competition in some cases, but this behaviour was far from systematic.

Also, word competition models assume that competitor words are totally deactivated when

the acoustic input does not match the internalised representation, but we found it was not

the case for most of the word pairs we tested.

The work we presented in this chapter has some limitations. The first one being that

we only used synthetic speech, however, this issue was addressed by Scholten et al. (2020)

and confirmed the results we present. One of the issue we faced was that we were limited

to a given set of words. Indeed, we were limited by the data set we used and the most

frequent words it contains. We chose words according to the 80 object types the data set

was conceived around. Nonetheless, all of those words are not equally well recognised by

the network, and therefore the activation pattern of some words was rather unclear.

Also, the analysis of the network’s representation is uneasy as we predict a vector in a

continuous space, and the only way of interpreting the network’s behaviour is by looking at

which images are retrieved. Studying if there is any form of competition in an ASR model

would be much easier as the last layer consists in a softmax over the vocabulary.
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Impact of Prior Linguistic

Information

The work presented in this chapter is based on the article we published at CoNLL2020

Havard et al. (2020).

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Boundary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Boundary Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.2 Integrating Boundary Information . . . . . . . . . . . . . . . . . . . 105

6.2.3 All and Keep Conditions . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.4 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.4.1 GRUPACK. Position . . . . . . . . . . . . . . . . . . . . . 107

6.2.4.2 Random Boundaries . . . . . . . . . . . . . . . . . . . . . 107

6.2.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.5.1 True and Random Boundaries . . . . . . . . . . . . . . 108

6.2.5.2 All and Keep . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.5.3 Phone, Syllable, or Word . . . . . . . . . . . . . . . . . . 110

6.2.5.4 GRUPACK. Layer Position . . . . . . . . . . . . . . . . . . 111

6.2.6 Segmentation as a means for compression . . . . . . . . . . . . . . 111

6.3 Hierarchical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Integrating Hierarchical Information . . . . . . . . . . . . . . . . . 112

6.3.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.3 Two GRUPACK. Layers . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.3.1 Phones and Words . . . . . . . . . . . . . . . . . . . . . . 113

6.3.3.2 Phones and Syllables . . . . . . . . . . . . . . . . . . . . 115

6.3.3.3 Syllables and Words . . . . . . . . . . . . . . . . . . . . . 116

6.3.3.4 Section Conclusion . . . . . . . . . . . . . . . . . . . . . 116

6.3.4 Three GRUPACK. Layers: Phones, Syllables, and Words . . . . . . . 117

6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Introduction

In the previous chapters, we showed that RNN-based VGS speech models use their atten-

tion mechanism to highlight words that are relevant to retrieve the correct image, and that
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such models implicitly segment the spoken input into sub-units. In this chapter, instead of

understanding what types of units were implicitly segmented by the network, we approach

the problem the other way round and ask ourselves the following question: what segmenta-

tion maximises the performance (recall@k) of a VGS model if speech were to be segmented?

In order to answer this question, we explore how boundary information can be integrated,

which type of boundary is the most efficient (either phone, syllable, or word), and finally

where – that is, at which layer – such boundary should be introduced in the network. Fi-

nally, we also explore hierarchical models for which we provide multiple segmentation levels

at the same time to understand the effect of explicitly modelling the structure nature of

speech.

Another motivation for this experiment stems from the linguistic litterature, which shows

that litteracy (i.e. the ability to read) affects language acquisition, and more specifically

lexical acquisition. Havron et al. (2018) indeed showed in an artificial language learning

task that preliterate children have difficulties associating a novel word to its referent while

litterate children were easily able to do so. Several factors may explain this, the main one

being that prelitterate infant struggle to segment the speech stream, while litterate infants

are aided in this task by having seen visual cues (i.e. blanks) separating words.

Contrary to the previous chapters where we used the Theano-based model of Chrupa la

et al. (2017a), we switch to a PyTorch-based model.1 Also, in this chapter, we only used

one attention mechanism instead of two as in the previous chapters.

6.2 Boundary Information

6.2.1 Boundary Types

As previously stated, we wish to give linguistic information to our network, and more

specifically with segment boundary information. In this chapter, we define a segment as

either being a phone, a syllable, or a word. Segment boundaries were derived from the

forced alignment metadata (see § 3.2.4) so as to know which MFCC vector constitutes a

boundary or not. As the force aligner does not provide alignment at the syllable level, we

wrote a custom script to recreate syllables from the phonemic transcription.

We consider two different types of syllables in this work: indeed, when we speak, words

are not uttered one after the other in a disconnected fashion, but are rather blended together

through a process called “resyllabification”. In English, this phenomenon is visible when a

word ending with a consonant is followed by a word starting with a vowel. In this case,

the final consonant of the first word tends to be detached from it and attached to the next

word, thus crossing the word boundary. This phenomenon is illustrated in Example (1)

where phonemes in red indicate a resyllabification phenomenon.

(1) This is an example.

Transcription2 /DIs#Iz#@n#Igzæmp@l/

a. No resyllabification /DIs.Iz.@n.Ig.zæm.p@l/
b. With resyllabification /DI.sI.z@.nIg.zæm.p@l/

The two types of syllables that we consider in this work are the following: “syllable-word”

that refers to syllables that result from a segmentation that does not take into account

resyllabification (1-a), and “syllable-connected” that refers to syllables that result from a

segmentation that takes into account resyllabification (1-b). It should be noted that in

1https://github.com/gchrupala/vgs
2We use “#” to signal word boundaries and “.” to signal syllable boundaries.

https://github.com/gchrupala/vgs
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the syllable-connected condition, most word boundaries are lost.3 In the syllable-word

condition however all word boundaries are preserved and the segmentation inside a word

may occasionally result in a morphemic segmentation (as for example in“runway”/ô2n.weI/
or “air.plane” /Eô.plein/). Yet, this is not always the case, especially for longer words that

are of non-germanic origin (such as “elephant” /E.lE.fant/ or “computer” /k@m.pju.t@~/).

Thus, for each caption we have a sequence X of length T of d-dimensional acoustic

vectors X =
[
xd1, x

d
2, ..., x

d
T

]
and a corresponding sequence of scalars B of length T repre-

senting boundaries B = [b1, b2, ..., bT ], bt ∈ {0, 1}, where bt , 1 if xt is a segment boundary,

0 otherwise.

6.2.2 Integrating Boundary Information

In order to integrate boundary information in our network, we take advantage of its de-

sign, and more specifically of the recurrent cells and how such cells compute their output.

Recurrent cells, as already mentioned in the first part of this thesis (see 2.2.3), are partic-

ularly suited to handle sequences – such as speech – where each acoustic vector cannot be

independently considered, but rather depends on the preceding acoustic vectors. Recurrent

neural networks can thus be formalised as follows:

ht = f (ht−1, xt; θ) (6.1)

where the hidden state at timestep t, noted ht is a function f of the previous timestep

ht−1 and the current input vector xt, and where θ is a set of learnable parameter of the

function f . Hence, the final vector computed at timestep T depends on all the previous

vectors, thus effectively modelling the sequential nature of the input. A special case arises

for the first timestep t = 1 as the previous hidden state ht−1 does not exist. In such case,

the initial state ht−1 – noted h0 and called the initial state – is set to be vector of zeros.

Our approach to integrate boundary information into the recurrent layers of our network

can be formalised as follows:

ht =

{
f (h0, xt; θ) , if bt−1 = 1

f (ht−1, xt; θ) , otherwise
(6.2)

In our approach, ht is only dependant on the previous timestep ht−1 if the previous

timestep was not an acoustic vector corresponding to segment boundary (bt−1 6= 0). If the

previous timestep corresponds to a segment boundary (bt−1 = 1), we reset the hidden state

so that it is equal to h0. Hence, vectors in the same segment are temporally dependent, but

vectors belonging to two different segments are not. The GRUs that use this computing

scheme will from now on be referred to as GRUPACK., as vectors belonging to the same

segment are “packed” together.

As for our previous experiments, we use GRUs, but our methodology could be applied

to any other type of recurrent cells such as LSTM of vanilla RNN.

6.2.3 All and Keep Conditions

From this initial GRUPACK. setting, we derived to different conditions: all and keep. In

the all condition (see Figure 6.1b), all the vectors belonging to a segment are forwarded to

the next layer (which can either be a recurrent layer, or an attention mechanism depending

3Word boundaries are not lost in the following cases: V#V and C#C when CC is not an allowed complex
onset. C and V respectively refer to “consonant” and “vowel”.
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(a) (b) (c)

Figure 6.1: Graphical representation of the different GRUs used in our experiments: Fig-

ure 6.1a shows a Vanilla GRU. Figure 6.1b shows GRUPACK. in the all condition where all

the vectors produced at each time step are passed on to the next layer. 6.1c shows GRUPACK.

in the keep condition where only the last vector of a segment is passed on to the next layer,

thus resulting in an output sequence shorter than the input sequence. The red crosses in-

scribed in a square ( ) signal that the output vector computed at a given timestep is not

passed on to the next timestep and that the initial state h0 is passed on instead. The red

crosses inscribed in a circle ( ) signal that the output vector computed at a given timestep

is not passed on to the next layer. Dotted lines group vectors belonging to a same segment

(either phone, syllable-connected, syllable-word, or word). Note that h0 is only passed on to

the next state at the end of a segment, thus effectively materialising a boundary by manually

resetting the history. Also note that the x1, x2, ..., xt figured in this representation could either

be the original input sequence (in our case, acoustic vectors) or could also be the output of

the previous recurrent layer

on the position of the GRUPACK. layer). In the keep condition, only the last vector of

each segment is forwarded to the next layer (see Figure 6.1c). The length of the output and

input sequence stays the same in the all condition. However, it should be noted that in

the keep condition, the length of the output sequence is shorter than the input sequence.4

The difference between all and keep is motivated by the fact that we believe that

keeping the last vector of a segment could constrain the network to learn more consistent

representations for different occurrences of the same segment. Indeed, in the all condition,

even though a vector at timestep t is different from its neighbours, we expect consecutive

vectors to share a substantial amount of information as the acoustic vectors are extracted

within a very short timeframe with an overlapping window (see 3.2.3, footnote 10). Thus,

boundary information might be watered down by the fact that the preceding and following

vector contain redundant information, and the network might not use this information

effectively. However, in the keep condition, as only the last vector of a given segment

is forwarded to the next layers, the network is forced to “cram” as much information as

possible in a single vector so as to pack the information effectively. Also, as only the final

vector is kept, it should be as informative as possible as the subsequent layers will have less

information to rely on, making it difficult to reconstruct the missing data.

Our GRUPACK.–keep segmentation approach was inspired by prior work by Kreutzer

& Sokolov (2018) on dynamic segmentation for MT. However, we also found that a nearly

identical approach was proposed by Chen et al. (2019) in an Audio-Word2Vec experiment.

Instead of being given gold segment boundaries, a classifier outputs a probability that a

given frame constitutes a segment boundary, and if so, the RNN’s history is reset and

4Potentially, the length of the sequences can be different for different items inside a batch as the captions
have a different number of segments (be they phones, syllables or words). For this reason, and as the
subsequent layers expect a 3D rectangular matrix (of shape batch size× sequence× embedding dimension)
we add padding vectors on the sequence dimension until all the elements of the batch have the same sequence
length.
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only the last vector of a segment is forwarded to the next layers. Working with pre-

segmented speech is also analogous to prior work done by Harwath & Glass (2015) where

the spectrogram was broken into words. Nonetheless, our work is different from theirs as

we also explore other types of segments (not only words, but also phones and syllables) and

also because we introduce this information at different layers of the architecture.

6.2.4 Experimental Settings

6.2.4.1 GRUPACK. Position

In order to understand where boundary information should be introduced (that is, at which

level of the architecture), we train as many models as the number of recurrent layers,

where each time one layer of GRUs is replaced with one GRUPACK. layer. For example,

“GRUPACK.–3” refers to a model where the third layer of GRUs is a GRUPACK. layer and

other layers (1st,2nd,4th, and 5th layer) are vanilla GRU layers. This setting will allow to

explore where introducing boundary information is the most efficient.

6.2.4.2 Random Boundaries

In order to understand if introducing boundary information helps the network in its task,

we compare the performance of the models using boundary information with a baseline

model which does not use any (thus, all the recurrent layers of the baseline architecture are

Vanilla GRU layers). This model will from now on be referred to as baseline. We also

introduce another condition, where, instead of training models with real segment boundaries

(which from now on will be referred to as true), we train models with random boundaries

(which from now on will be referred to as random). Indeed, it could be that randomly

slicing speech into sub-units leads to better results, even though the resulting units do

not constitute any linguistically meaningful units. Therefore, training models with random

boundaries will enable us to verify this claim. Random boundaries were generated by simply

shuffling the position of the real boundaries (vector B introduced in §6.2.1), resulting in as

many randomly positioned boundaries as they are real boundaries. Note that we do still

expect the models to have reasonable results even when using random boundaries, as the

acoustic vectors are kept untouched. However, we expect that placing random boundaries

will hinder the network’s learning process and thus yield results significantly lower than

when using true boundaries. We expect the results to be significantly lower in the random-

keep condition as this condition is equivalent to randomly subsampling the input, and thus

removing a lot of information.

6.2.4.3 Evaluation

Models are evaluated in term of Recall@k (R@k). Given a spoken query, R@k evaluates

the models’ ability to rank the target paired image in the top k images. In order to

evaluate if the results observed in our different experimental conditions (true-all, true-

keep, random-all, random-keep) are different from one another and from the baseline

condition, we used a two-sided proportion Z-Test. This test is used to assess if there is a

statistical difference between two independant proportions. As for each spoken query there

is only one target image, R@k becomes a binary value which equals 1 if the target image

is ranked in the top k images and 0 otherwise. In our case, the proportion that we test

is the number of successes over the number of trials (which corresponds to the number of

different caption/image pairs in the test set).
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6.2.5 Results

Overall, our experimental settings led to the training of 81 different models per data set.5

baseline results are shown in Table 6.1. Results for the true/random conditions obtained

Data set R@1 R@5 R@10

COCO 9.0 27.0 39.5

Flickr8k 4.3 13.4 21.4

Table 6.1: Mean recalls at 1, 5, and 10 (in %) on a speech-image retrieval task COCO and

Flickr8k in the baseline condition on the test set (based on the results of the best epoch on

the validation set). Chance scores are 0.0002/0.001/0.002 for COCO and 0.001/0.005/0.01 for

Flickr8k. Results are different than those presented in Chapter 4 as we use a different code

that uses a different Deep Learning framework.

on the COCO and Flickr8k data sets are shown in Table 6.2 and 6.3 respectively. We obtain

lower results on Flickr8k than on COCO which shows how difficult the task is on natural

speech. Note that the results obtained on synthetic speech are also very low compared to

their textual counterpart.6

6.2.5.1 True and Random Boundaries

The first question our experiments aim at answering is whether introducing boundary infor-

mation helps the network in solving its task or not. Overall, models trained on Flickr8k

with true boundary information have a significantly better R@1 than their baseline coun-

terparts and models trained with random boundaries (which are either on a par with the

baseline, or worse). This indicates that the models did effectively use the provided boundary

information.

For COCO, we observe that some models trained with random boundaries have signif-

icantly better scores than the baseline (particularly when using phone boundaries in the

keep condition). We explain this by the fact that randomly subsampling the input signal

might act as a form of regularisation for the network. This effect disappears when using

larger units, such as words, for which the results are not significantly different from the

baseline. This regularisation effect might only be due to the fact that COCO uses synthetic

speech with only one voice and hence, has very low intra-speaker variation. Thus, even

though we randomly subsample the input, as there is very little intra-speaker variation, the

network is much more likely to figure out from which units the subsampled vector came

from.

6.2.5.2 All and Keep

The results shown above should also be analysed in regards to the all and keep conditions.

Indeed, there is an interaction effect between using true and random boundaries either

in the all or keep condition.

This effect is particularly noticeable for Flickr8k. Indeed, in the random-all condi-

tion, no result is statistically better than the baseline, while in the random-keep condition,

the results are statistically worse than the baseline. This clearly shows that keeping the last

vector only of segment rather than all of the vectors has a real effect, and that this effect is

particularly noticeable when using random boundaries. Hence, using random boundaries

5(Seg. type ∈ {phone,syl.-connected,syl.-word,word}×GRUPACK.{1,2,3,4,5}× {true,random}× {all,keep})
+ baseline

6Merkx & Frank (2019) reports R@1 = 27.5 on a GRU-based model using characters as input.
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COCO | all condition

GRU Phones Syl.-Co. Syl.-Word Word

Pack. T R T R T R T R

5 09.7 + 09.4 09.1 09.5 09.5 09.4 09.3 09.5

4 09.3 09.2 09.4 09.1 09.6 09.2 09.0 09.4

3 09.5 09.2 09.2 09.1 09.4 09.1 09.4 09.2

2 09.4 08.9 09.7 + 09.1 09.6 09.2 09.7 + 08.9

1 09.8 + 09.4 09.6 09.4 10.0 + 09.1 09.5 09.1

COCO | keep condition

GRU Phones Syl.-Co. Syl.-Word Word

Pack. T R T R T R T R

5 9.4 9.6 9.1 9.1 9.6 9.1 9.4 8.7

4 10.0 + 10.5 + 10.2 + 9.6 10.4 + 9.9 + 10.6 + 9.5

3 10.5 + 10.1 + 10.4 + 9.8 + 10.5 + 10.1 + 11.0 + 9.7

2 10.7 + 9.8 + 10.5 + 9.4 10.9 + 9.3 11.3 + 8.8

1 10.1 + 7.9 – 9.7 7.1 – 10.2 + 7.0 – 10.3 + 7.0 –

Table 6.2: Maximum R@1 (in %) for each model trained on the COCO data set. “T” stands

for true (boundaries) and “R” stands for random (boundaries). “Syl-Co.” and “Syl-Word”

stand for “Syllable-Connected” and “Syllable-Word” respectively. Each line shows the results

for when a specific recurrent layer is a GRUPACK. layer. The 1st layer is the lowest layer

(right after the 1D convolutions and acoustic vectors) and the 5th the highest (right after the

four preceding recurrent layers and before the attention mechanism). The highest R@1 in the

table is shown in red. The best results between each true and random pair (columnwise) are

shown in bold. ◌+ and ◌– indicate that the results are statistically better (respectively worse)

than the baseline. Results in italics show statistical significance (two-sided Z-Test, p-value

< 1e−2, see §6.2.4.3) between each true and random pair (columnwise).

which do not delimit meaningful linguistic units really hurts the performance of the net-

work. Furthermore, we notice that the results between all either in the random or true

condition are not statistically different from one another while they are in the keep condi-

tion. This tells us that boundary information is not used effectively in the all condition,

even when true boundaries are given. The only exception to this statement is when using

word boundaries at the first layer in the all condition. It seems that boundaries are only

effectively used here. This confirms our intuition that the keep condition effectively con-

strains the network to learn better representations, and that in the all condition boundary

information is watered-down by the neighbouring vectors, thus leading to a suboptimal use

of such information.

For COCO as well, we notice an asymmetry between the all and keep conditions.

In the all condition, the results are rarely significant while there are significantly better

than the baseline in the keep condition. Here also, we observe an interaction between the

true-random and keep-all condition. In the all condition, the results between true

and random are rarely significantly different from one another, while they are in the keep

condition.
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Flickr8k | all condition

GRU Phones Syl.-Co. Syl.-Word Word

Pack. T R T R T R T R

5 4.0 3.9 4.1 4.1 4.3 3.9 3.4 4.2

4 4.0 4.4 3.9 4.1 4.3 3.8 4.5 4.5

3 4.5 4.4 4.3 4.2 4.4 4.2 4.5 3.8

2 4.5 3.8 4.8 3.6 4.4 4.2 4.7 4.1

1 4.3 3.4 4.0 4.0 4.4 4.3 5.3 + 4.1

Flickr8k | keep condition

GRU Phones Syl.-Co. Syl.-Word Word

Pack. T R T R T R T R

5 3.6 3.7 3.6 2.5 – 3.3 3.0 3.2 3.2

4 3.8 3.8 4.4 3.5 3.9 2.6 – 5.2 + 2.5 –

3 4.9 + 3.8 4.5 3.1 5.3 + 3.1 4.9 + 3.3

2 4.8 + 3.9 5.1 + 3.6 4.8 3.4 5.4 + 3.4

1 4.8 2.4 – 3.4 1.9 – 4.4 2.0 – 3.9 1.9 –

Table 6.3: Maximum R@1 (in %) for each model trained on the Flickr8k data set. The same

naming conventions of Table 6.2 are used for this table.

6.2.5.3 Phone, Syllable, or Word

In our experiments, we used four different types of segments corresponding two different

types of linguistic units: phones, syllables-connected, syllables-word, and words. These

different types of segments vary in length (words and syllables are longer than phones),

quantity (there are more phones and syllables than words), and intrinsic linguistic in-

formation: phones only show which are the basic acoustic units of the language, while

word segments represent meaningful units, and syllables-word and syllables-connected are

a higher form of acoustic units that may contain morphemic information. Given the task

the network is trained for (speech-image retrieval), we do not expect these different units

to perform equally well. Indeed, as this task implies mapping an image vector describing

which objects are present in a picture and a spoken description of an image, we expect

word-like segments (or segments that preserve word boundaries and that bear a substantial

amount of semantic information) to perform better.

This is in fact what we observe in practice. Word units obtain statistically better results

than the baseline for both Flickr8k and COCO (R@1 = 5.4, +1.1pp and R@1 = 11.3,

+2.3pp respectively). Syllables-word also bring significant improvement (R@1 = 5.3 for

Flickr8k and R@1 = 10.9 for COCO), however, slightly less than when using word units.

It should be noted that syllables-connected segments obtain also statistically significant

improvement over the baseline (GRUPACK.–2 for both data sets) despite not preserving

all word boundaries. However, these results are slightly worse than the syllables-word

and word segments suggesting that preserving word boundaries is a property that helps

the network. Using syllable-connected segments yields results that are on par with phone

units. It appears that the size of a segment is a very important parameter. Indeed, phone

segments (naturally) preserve word boundaries but of course naturally lack the internal

cohesion of a morpheme or a word as nothing links two adjacent phonemes together, while

syllables-connected do not preserve word boundaries, but present a higher internal cohesion.

Hence, it seems that segments that preserve both meaning and word boundaries (such as
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words) or from which meaning can be more easily recomposed (syllable-word) may facilitate

the network’s task. The fact that syllable-word segments perform as well as word segments

might only be an artefact of using English where a high proportion of word is monosyllabic.7

Working on a language where the syllable-to-morpheme ratio is higher would be a future

line of work that would enable to test this hypothesis.

6.2.5.4 GRUPACK. Layer Position

We introduced boundary information at different levels of our architecture in order to better

understand at which layer it is the most useful to add such information. We will focus in

this section on the results obtained in the keep condition, as the all condition brings little

improvement over the baseline condition.

Our results clearly show that introducing boundary information at different layers has

a substantial impact on the results: using such information at the first or the fifth layer

is useless, as we notice it either yields similar results as the baseline (GRUPACK.–1) or

worsens the results regardless of the type of boundary used (GRUPACK.–5). When using

syllables-word segments the best results are obtained when introducing the information

at GRUPACK.–3 (GRUPACK.–2 for COCO), and GRUPACK.–2 for word segments. This

results are in line with that of Chrupa la et al. (2017a) who found that the representations

learnt by the fifth layer is the less informative in predicting word presence, while lower layers

encode this information better. This confirms that the middle layers of our architecture

are better suited to deal with lexical units whereas the fifth layer encodes information that

disregards that type of information.

All in all, for Flickr8k word-like segments seem to be the most robust representation to

be used as they yield significantly better results at three different layers (GRUPACK.–2,3,4).

For COCO, we observe mixed results where introducing boundary information at the first

four layers improve our baseline results. However, the results tend to be higher when

boundary information is introduced at the second layer, confirming this layer is the one

that benifit the most from boundary information overall.

6.2.6 Segmentation as a means for compression

Recall that in the keep condition, only the last vector comprising a segment is kept while

the other vectors are discarded. This can be interpreted as a form of “guided” subsampling,

as usually subsampling does not take into consideration linguistic factors. To understand

how much information is kept between the input and the output of a GRUPACK. layer

in the keep condition, we compute an average compression rate (in %) for each of the

segment types for Flickr8k. The results are the following: phones = 90.57%, syllables-

connected = 93.41%, syllables-word = 94.36%, and words = 94.90%.8

When we re-analyse our results in light of this information, it appears we can remove

a large part of the original input (up to 94.90% if using word segments) while conserving

or increasing the original R@1. It is not simply the effect of subsampling that helps, but

subsampling with meaningful linguistic units. The effect of informed subsampling is striking

when we compare R@1 for random-keep, which are always below the baseline, while

true-keep are on a par with the baseline or better. This effect is particularly visible for

GRUPACK.–1 in the random condition where the more vectors are discarded (syllable-like

and word segments), the worse the results are. This can only be explained by the fact that

7Jespersen (1929) estimates that at least 8,000 commonly frequent words are monosyllabic in English.
8Note that the compression rate for syllables-word and words is very close, suggesting there is a significant

overlap between syllables-word units and word units.
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randomly subsambling removes important information that the network is unable to recover

in the four subsequent layers. A counter-intuitive finding of our experiments is that it is

better to subsample early on (in the first layers) and thus remove most of the information

early on than later on. Subsampling with word segments in GRUPACK.–2 (and thus only

keeping 5.1% of the original amount of information for the subsequent layers) yields better

results than subsampling with the same resolution at GRUPACK.–5.

6.3 Hierarchical Information

6.3.1 Integrating Hierarchical Information

In the aforementioned experiments, we supply the network with only one type of boundary

(either phone, syllable, or word) but not multiple at the same time, as if several units

could not coexist at the same time. Yet, this does not correspond to how speech is really

structured. Indeed, multiple spoken units exist at the same time, and they are structured

hierarchically: words can be broken down into syllables, which can be in turn be broken

down into phones.9 In order to model such hierarchical nature of speech, we can stack as

many GRUPACK. as desired, where one layer handles one type of segment (e.g. phone)

and the following GRUPACK. layer handles another type of segment, that is hierarchically

above the preceding (e.g. syllable, or word).10 A graphical representation of a hierarchical

GRUPACK. architecture is shown in Figure 6.2.

We expect such hierarchical architecture to perform even better than a single-layered

GRUPACK.. Indeed, a two-layered architecture should constrain the network to learn even

better representations than a single-layered architecture, especially for longer segments such

as words. Words might be long units and capturing all their details in a single pass might

be challenging. By breaking them first into sub-units, such as phones or syllables, we expect

the network to learn more consistent representation and help the network better distinguish

between words differing by only one phoneme.

Harwath et al. (2020) explored such hierarchical architecture using a CNN-based model

that incorporated multiple vector quantisation layers and found that it improved the net-

work ability to retrieve the target image. Our work thus attempts to verify if it is also the

case for an RNN-based model, when provided with gold boundaries.

6.3.2 Experimental Settings

We explore the effect of using a hierarchical architecture on the Flickr8k data set only, as

it features real human speech and might thus be more challenging, but also more realistic.

Contrary to our previous experiments, we will only consider hierarchical architectures that

use GRUPACK.–keep layers, as we have shown that GRUPACK.–all bring little improve-

ment over vanilla GRUs.

We test various architectures that handle different type of boundaries simultaneously

with two out of the five recurrent layers being GRUPACK. layers (6.3.3) or with three

GRUPACK. layers (6.3.4). In both cases, we test all possible positions as well as boundary

type to understand what the best combination is.

9Note that for Japanese, we could add another intermediate step between syllables and phones which
would be moræ

10Note that it could also be possible to use larger units, such as chunks.
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Figure 6.2: Graphical representation of a hierarchical architecture that uses two GRUPACK.

layers. The 1st GRUPACK. layer is supplied with phone boundary information. This layer

outputs vectors representing phones that are recomposed from the input vectors. The next

layer, GRUPACK.–2 takes these phone vectors as input and recombines them into words and

outputs vector representing whole words. This architecture effectively models the hierarchical

nature of speech, where words consist of a sequence of phones. Note that both GRUPACK. are

in the keep condition where only the last vector of a given unit is kept. As in Figure 6.1, note

that x1, x2, ..., xt need not be acoustic vectors, but could also be the output of the previous

vector.

6.3.3 Two GRUPACK. Layers

In this section, we experiment an architecture with two GRUPACK. each handling different

boundary types: phones and words (6.3.3.1), phones and syllables (6.3.3.1), and syllables

and words (6.3.3.3). We vary the position of the GRUPACK. layers used in our architecture

and test all the combinations of possible positions.

6.3.3.1 Phones and Words

When using phones and words together, the results (Table 6.4) are higher than the baseline

architecture and than the single-layered GRUPACK. architecture. Indeed, we obtain a max-

imum R@1 of 8.2% when using GRUPACK. at the layer 2 and 3 which is +3.9pp over the

baseline and +2.8pp over a single-layered architecture. We also notice that using a hiearchi-

cal architecture also allows us to train shallower networks while improving the results over

our baseline architecture. For example, a two-layered architecture (where both layers are

GRUPACK.) has a R@1 of 6.4 which is +2.1pp over our 5-layered baseline architecture that

does not use any boundary information.



114 Chapter 6. Impact of Prior Linguistic Information

Here also, we observe that placing a GRUPACK. layer at the last layer yields worse

results than when the last layer is a vanilla GRU layer. Indeed, we observe that for all

the architectures, when the last layer is a GRUPACK. layer, the results are substantially

lower when placed one layer before. Once again, this confirms that the last layer of the

network – which is just before the attention mechanism – handles semantic information

and is not concerned with form any more. These results also indicate that the GRUPACK.

layers are more effective when placed in the middle of the architecture, than when used

at the beginning: both for a five-layered architecture or a four-layered architecture, the

best results are obtained when the GRUPACK. are placed at layers 2 and 3, suggesting that

speech requires a certain form of pre-processing in the lower layers in order to use boundary

information more effectively.

Architecture 5 layers 4 layers 3 layers 2 layers

1stGRUPACK.

2ndGRUPACK. 1 2 3 4 5 1 2 3 4 1 2 3 1 2

1 7.7 7.7 7.3 3.9 7.6 7.9 5.7 8.1 5.3 6.4

2 8.2 7.6 5.8 8.1 6.3 7.3

3 7.1 6.5 6.7

4 6.1

5

Baseline 4.3 4.4 3.4 3.5

Table 6.4: R@1 obtained on the test set of the Flickr8k data set with a hierarchical architecture

consisting of two GRUPACK. layers using phone and word segments (models were selected

based on the maximum R@1 on the validation set). Best score overall is shown in red. Best

score (layer-wise) is shown in bold. Greyed out cells signal impossible configurations. We also

indicate R@1 obtained on a baseline architecture that does not use any GRUPACK. layers.

In our previous experiments, we observed that even random boundaries could yield

statistically better results than the baseline and showed it could only be explained by a

regularisation effect. It could be that stacking two GRUPACK. layers yields better results

not because of the hierarchical nature of the architecture, but simply because of a double

regularisation effect. To investigate if such effect arises or not, and in order to confirm

our previous observations, we select our best performing architecture (5-layered architec-

ture with GRUPACK. layers at layer 2 and 3, see Table 6.4) and retrain it using random

boundaries.11 We thus have the following training and testing settings:

• true phones + true words : the first GRUPACK. layer receives true phone

boundaries and the second GRUPACK. layer receives true word boundaries. This is

the ideal condition, and we expect models trained with such boundaries to have the

best results (this setting corresponds to the R@1 = 8.2 in the previous table).

• true phones + random words : the first GRUPACK. layer receives true phone

boundaries while the second GRUPACK. layer receives random word boundaries, ran-

domly sampled from the phone boundaries.

• random phones + true words : the first GRUPACK. layer receives random

phone boundaries while the second GRUPACK. layer receives true word boundaries.

Because the second layer requires true word boundaries, we also need to keep some

boundaries intact in the phone boundaries provided to the first GRUPACK. layer.

Thus, the random boundaries provided to the first layer are not entirely random, and

11When using random phone or random word boundaries, we make sure to keep the number of random
boundaries the same as the number of true boundaries.
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they are as many true phone boundaries as the number of words. The true phone

boundaries we keep correspond to the last phoneme of a word.

• random phones + random words : the first GRUPACK. receives random phone

boundaries and the second GRUPACK. receives random word boundaries, randomly

sampled from the phone boundaries. This is the worst condition, and we expect

models trained with such boundaries to have the worst results.

The results we obtained using random phones and/or random word boundaries are

shown in Table 6.5. We notice that all the results are lower when using random phones

and/or random words than when using true phones and true words together. This thus

shows that the better results obtained with a hierarchical architecture are not to be ex-

plained by a double regularisation effect, as if it had been the case, we should have observed

similar results with random boundaries. Hence, we conclude that using a hierarchical struc-

ture is indeed beneficial because it accounts for the hierarchical nature of the spoken units

and helps the network build better (more consistent) representations.

GRUPACK. Pos.

Configuration true Phones

true Words

true Phones

random Words

random Phones

true Words

random Phones

random Words

2 and 3 8.2 4.3 3.6 1.0

Table 6.5: R@1 obtained on the test set of the Flickr8k data set with a hierarchical architecture

consisting of two GRUPACK. layers using random phones and/or random word boundaries

(models were selected based on the maximum R@1 on the validation set). Best score overall

is shown in red. Best score (layer-wise) is shown in bold.

6.3.3.2 Phones and Syllables

The results we obtain when using phones and syllables is shown in Table 6.6. Here also,

we notice that the results are better than the baseline results (without any GRUPACK.)

and also better than when using only one GRUPACK.: R@1 = 7.9, +2.5pp. Contrary

to the previous experiment, the 4-layered architecture converges better than the 5-layered

architecture. Nonetheless, the results are lower than when using jointly phones and word

(−0.3pp) indicating that using jointly phones and syllables is not the ideal combination.

Once again, we do observe the same tendencies as we previously put forward: weaker results

Architecture 5 layers 4 layers 3 layers 2 layers

1stGRUPACK.

2ndGRUPACK.

GRU PACK
1 2 3 4 5 1 2 3 4 1 2 3 1 2

1 6.6 6.0 6.3 4.3 6.9 6.5 4.6 6.6 4.9 4.6

2 7.5 6.8 5.7 7.9 4.7 6.1

3 6.5 4.8 4.7

4 4.6

5

Baseline 4.3 4.4 3.4 3.5

Table 6.6: R@1 obtained on the test set of the Flickr8k data set with a hierarchical architecture

consisting of two GRUPACK. layers using phones and syllable-word (models were selected based

on the maximum R@1 on the validation set). The same naming conventions of Table 6.4 are

used for this table

when the last layer is a GRUPACK. layer; and the best results are obtained when GRUPACK.

layers are placed in the middle layers. We however observe that the two-layered architecture
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performs worse than in the previous experimental setting. Indeed, in the previous setting,

the result obtained with such an architecture was +2.1pp over our baseline result, while

the gain here is negligible: only +0.3pp over the baseline. This shows that even though

using word boundaries or syllable boundaries results in a higher compression rate (see

6.2.6), it does not compensate for the inherently lower semantic contribution of the provided

segments.

6.3.3.3 Syllables and Words

The results we obtain when using syllables and words is shown in Table 6.7. Once

again, we notice that R@1 is higher than a single-layered GRUPACK. architecture (R@1 =

7.6,+2.2pp) but worse than a two-layered architecture handling phones and words: −0.6pp.

The best result is also lower than the best result when using phones and syllables −0.3pp.

However, we observe that the two-layered architecture performs better than the baseline

(+1.0pp) and better than the two-layered architecture that uses jointly phones and syllables

(+0.7pp).

These results suggest two things: first, in order to use a very shallow architecture,

segments that bear a lot of semantic information should be preserved (as we observe better

results with such architectures when word segments are preserved). Second, keeping low-

level segments such as phones is also necessary when training deeper models. The fact

that we do not observe improvement when using jointly syllables and words with deeper

architecture might show that the information brought by both levels overlap and might be

redundant.

Architecture 5 layers 4 layers 3 layers 2 layers

1stGRUPACK.

2ndGRUPACK.

GRU PACK
1 2 3 4 5 1 2 3 4 1 2 3 1 2

1 5.7 5.5 5.7 4.5 5.7 6.8 5.2 6.0 5.2 5.3

2 7.3 7.1 6.1 7.6 6.0 6.3

3 6.8 5.7 6.0

4 5.5

5

Baseline 4.3 4.4 3.4 3.5

Table 6.7: R@1 obtained on the test set of the Flickr8k data set with a hierarchical architec-

ture consisting of two GRUPACK. layers using syllable-word and word segments (models were

selected based on the maximum R@1 on the validation set). The same naming conventions of

Table 6.4 are used for this table

6.3.3.4 Section Conclusion

Our experiments show that the best result using two GRUPACK. layers is obtained when

using jointly phone and word boundaries, when the GRUPACK. layers are placed in the

middle of the recurrent stack. We also observe that overall our results are maximal when

the layers immediately follow one another. Finally, this set of experiments allowed us to

show that the network converges best when low-level segments (phones) and high-level

segments (words) are used jointly. We explain this by the fact that this allows the model

to learn robust representations for the phone units, while having high level units that bear

a lot of semantic information. Consequently, using intermediate segments such as syllables

is not useful as they are not short enough to learn a consistent representation while being

too short in regards to the amount of semantic information they bear.
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6.3.4 Three GRUPACK. Layers: Phones, Syllables, and Words

Finally, we integrated three segment levels in a single model. As in our previous experiments,

we experiment with a different number of layers (from 3 to 5), each time with 3 GRUPACK.

layers at each possible position. The results of this experiment are presented in Table 6.8.

We observe that the best result obtained with this architecture (R@1 = 9.6) is far better

than the baseline (+5.3pp), better than the best result of a single-layered architecture

(+4.2pp) but also better than the best result of a double-layered architecture (+1.4pp over

the phone-word architecture). Our best result is obtained by a five-layered architecture with

GRUPACK. in position 1, 3 and 4. However, we notice that the four-layered architecture

obtains more consistent results across all layers, the maximum result being only −0.3pp

away from best five-layered architecture. We also notice that the 3 layered architecture

obtains a very high R@1 of 8.0 which is about two times over the baseline results. However,

the result obtain with such settings is worse than what was obtained when using a three-

layered architecture with two GRUPACK. layer (−0.1pp). We believe this is to be explained

by the fact that in such setting, there necessarily is a GRUPACK. at the last layer, and we

observe such architecture degraded the results overall.

GRUPACK.

Architecture
5 layers 4 layers 3 layers

1 + 2 + 3 8.5 9.3 8.0

1 + 2 + 4 8.1 8.6

1 + 2 + 5 7.8

1 + 3 + 4 9.6 8.4

1 + 3 + 5 7.9

1 + 4 + 5 7.8

2 + 3 + 4 8.8 8.3

2 + 3 + 5 8.5

2 + 4 + 5 8.3

3 + 4 + 5 7.8

Table 6.8: R@1 obtained on the test set of the Flickr8k data set with a hierarchical archi-

tecture consisting of three GRUPACK. layers using phone, syllable-word and word segments

(models were selected based on the maximum R@1 on the validation set). The same naming

conventions of Table 6.4 are used for this table

Even though we notice that R@1 improved when adding another boundary level in

this last experiment, we also observe that the leap in the results is not as big as what we

observed before. When using one GRUPACK., we observe an improvement of +1.1pp in

R@1 compared to our baseline architecture. When using two GRUPACK., we observe an

improvement of +2.8pp compared to using one GRUPACK.. And finally, when using a third

GRUPACK., we observed an improvement of +1.4pp compared to using two GRUPACK..

Thus, even though introducing more structure into the network is beneficial, we also observe

that some levels are more critical than others and have a bigger effect on the final result.

6.4 Chapter Summary

In this chapter we studied the impact of prior speech segmentation in a VGS model. We

presented a simple method to introduce boundary information at any recurrent layer of

our architecture. We do so by simply resetting the RNN’s history every time there is a

segment boundary. From this initial condition, we derived two conditions, the all and
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keep conditions, where we either keep all the vectors of a segment or only the last vector.

We showed that the latter is more efficient, as, first, it helps the network to learn consistent

representations, and second, it reduces the computational charge on the upper layers (as

less vectors are forwarded to the next layers).

The goal of this chapter was to see if segmenting speech in sub-units was beneficial –

that is, enabled the network to learn a better speech-to-image mapping – and if so, which

units maximise the performance. It is indeed the case that segmenting speech into sub-

units helps. This results is coherent with prior linguistic observation as well as previous

results with textual models. As to which segment obtains the best performance we observe

mixed results. Indeed, word segmentation yields better results than phone segmentation,

but we do also observe that syllable-like segmentation also gives results that are in the same

ballpark as word segmentation. Nevertheless, word segmentation seems to be a more robust

representation compared to syllable as such word segments consistently yield better results

at various levels of our architecture. Our experiments thus allowed us to observe that, such

as for humans, the use of large units, such as words, is indeed the most efficient solution to

learn a reliable speech-to-image mapping.

Additionally, we observed different results depending on the level at which segmentation

information is introduced. We observed negative effects if boundary information is intro-

duced too late (last layer of our architecture). This tends to show that the last layer is not

concerned with form any more and thus that boundary information should be introduced

before. This result is coherent with previous observation by Chrupa la et al. (2017a) and

Merkx et al. (2019) who showed that the last layer of such network does not encode word

presence (or absence) effectively. Surprisingly, if boundary information is introduced too

early (first layer), we do not observe any improvement over our baseline results. Thus, in

order to be used effectively, boundary information should be provided to the middle layers.

This shows that speech requires a certain amount of pre-processing before it is segmented.

Nonetheless, even though if introducing boundary information is useful, it only mildly

improves the performance of the network. It is only when different levels are combined

that the performance of the network reaches its peak. Our GRUPACK. setting allowed us to

simply introduce such hierarchy in a neural network by simply stacking GRUPACK. layers

and providing different boundary information to each of them. Our experiments reveal

that having a structure that uses low-level segments (i.e. phones) jointly with high level

segments (i.e. words) is better than using segments that are more or less of the same size

(i.e. jointly using syllables and words). Adding boundary information also allowed us to

reduce the number of layers while increasing the performance of the network. Therefore,

explicitly taking into account the hierarchical nature of speech proves useful.
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7.1 Summary of Findings

In this thesis, we studied an RNN-based model of Visually Grounded Speech. Our goal

was to analyse the representations learnt by our model in order to better understand what

type of linguistic knowledge neural models are able to acquire in an unsupervised fashion.

We compared these representations to what is known of human speech processing. More

specifically, we focused on lexical acquisition and found commonalities between the processes

at work in the models we studied and the processes reported in the child language acquisition

literature.

More specifically, the main contribution of this thesis is threefold:

• Synthetically Spoken STAIR data set. We introduced the “Synthetically Spoken

STAIR data set” which is based on the STAIR data set (Yoshikawa et al. 2017).

This data set constitutes the Japanese equivalent of the “Synthetically spoken COCO

data set” (Chrupa la et al. 2017a) for English. We introduced this data set as we

believe working on typologically distinct languages is of paramount importance if one

wants to truly understand the modelling capacities of deep neural networks. Despite

recent work on this subject (Linzen et al. 2018, 2019, Alishahi et al. 2020, Belinkov

& Glass 2019), most of the analyses focus on analysing deep neural networks trained

on data sets in English. As both the STAIR data set and the COCO data set use the

same set of images, this allowed us to compare the learning process of neural mod-

els trained on the exact same data, the only changing parameter being the language

spoken.

• Analysis of attention. We showed that RNN-based models are able to detect recurring

specific patterns in the acoustic input. More specifically, we showed such models did

so by tuning the weights of their attention mechanism so as to give more importance

to parts of the acoustic input that are particularly discriminative to predict a visual

context. The models we trained focus specifically on concrete words such as nouns,

as those refer to objects that are particularly salient in the images. We observed

this behaviour for two typologically distinct languages, English and Japanese, hence

showing this behaviour does not depend on a particular language. We concluded

that the models we studied displayed a noun bias, such as what is also found in

humans during the process of lexical acquisition, but we however highlighted that

such preference might only be a consequence of the data set used in the experiments,

which consists of still images.

We also showed that despite adopting a language-general processing behaviour, the

model could also develop a language-specific behaviour in order to better solve its task.

Specifically, we put forward in this thesis that the Japanese models have learned to

detect and highlight particles (such as the “ga” particule) showing a language-specific

behaviour. By doing so, the model adopted the same behaviour as Japanese toddlers

in order to segment the speech stream, who also use particles to detect nouns in the

speech stream.

The networks’ ability to highlight nouns — and particles for Japanese — is a be-

haviour that the networks learned to adopt with a very few examples — less than 500
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image/caption pairs — showing the network quickly learns which are the most impor-

tant parts of the captions. This is an interesting finding, as it is generally admitted

that large neural networks require a large amount of data to be trained effectively.

We indeed find that the models we train require large amounts of data to solve their

primary task effectively (see Appendix D), but they are however able to focus on

the important parts of the speech inputs with very few examples. This suggests such

networks could be used on low-resourced languages by linguists so as to automatically

detect nouns in the spoken input.

• Analysis of individual word knowledge. We showed that the network was able to

map individual nouns to their correct visual referent. This suggest that the network

implicitly segmented its input into sub-units, and later mapped them to a visual

context. However, we observed that the network was not able to map all isolated

nouns to their visual referents equally well. Indeed, while the network was able to

learn very reliable mappings between a word-form and its visual referent for about

half of the most important words of the data set, the other half were not mapped to

their visual referent, suggesting the model’s lexicon is restricted to a set of words. We

observed that this phenomemon was mainly due to the frequency of the word in the

caption: the more frequent a word-form is, the better the model maps it to its visual

referent.

We then studied how the network activates an isolated word and compared it to

model of word activation and recognition in humans. We showed that the network

necessarily needed to have access to the first phoneme of a word in order to activate

the representation of the target word. This result is similar to what is postulated in

the Cohort model of speech recognition, where word onsets are of particular impor-

tance to activate and recognise a word. Using an algorithmic equivalent of the gating

paradigm Grosjean (1980, 1985), a methodology stemming from psycholinguistics, we

were able to observe that word activation does not occur linearly, but rather evolves

in steps. This enabled us to conclude the model was able to recognise a word from a

partial input, that is before its offset. We investigated if word recognition was carried

out through a process of simultaneous activation of a cohort of words, that would

then compete for recognition. We found some evidence of simultaneous activations

for some words and competition between them, however, this process seems far from

systematic, as we have shown that some words are activaed without competing with

similar sounding words.

• Introduction of prior linguistic information. Finally, we investigated if introducing

prior linguistic information in the form of boundary information was beneficial. We

indeed found the network benefited from such information, particularly when the

network was given word boundaries. The network benefited from phone and syllable

boundary information, however, not as much as word boundaries. More importantly,

we found that taking into account the hierarchical nature of speech, by simultatneously

giving to the network phone, syllable and word boundaries, yielded even better results.

We observed that introducing this information at different layers impacted signifi-

cantly the results, and that this information was better handled by the intermediate

layers. This experiment also allowed us to observe that keeping only the last vector

of a segment (keep condition) which is equivalent to subsampling the speech signal

in a linguistically meaningful way was more effective than keeping all the vectors of

a segment. Hence, compressing the information in such a way that it is linguistically

meaningful enables the network to acquire better representations.
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In his book, Bloom (2002, p. 60) argues that “children learn the meanings of words

through theory of mind. If this is right, then a direct connectionist implementation of

word learning, in which sounds are associated with percepts, is unfeasible. (And this does

preclude all connectionist theories of word learning that [he is] aware of.)”. We believe the

experiments we carried in this thesis, as well as previous work by Harwath et al. (2016),

Harwath & Glass (2017), Chrupa la et al. (2017a), Merkx et al. (2019) (among others) show

that purely connexionist models are able to directly associate sounds with percepts, here, in

the form of vector representations of visual stimuli. Hence, connexionist models are able to

learn words to some extent. Of course, we do not argue that child lexical acquisition is only

done via a purely associative mechanism, but it might be that a purely associative learning

mechanism bootstraps lexical acquisition for children. An argument against this fact could

be that connexionist approaches require large amounts of data to be trained effectively.

However, our experiments show that our models learned to focus on specific nouns with a

very few number of examples, suggesting associationist bootstrapping constitutes a viable

mechanism to acquire a lexicon.

Given the architecture we use in our experiments, the lexical acquisition process we

simulate is necessarily limited, as our architecture is not fully grounded (see Figure 2.8 in

Chapter 2). Also, an ideal model would not only include visual stimuli, but also olfactory,

tactile, etc. and would be a model that would be possible to interact with. In this thesis,

we consider word-form/object mapping as a proxy for word learning. Yet, word learning

entails much more than simply mapping a word-form to its visual referent, but should also

include morphological information, syntactic information, and pragmatic information. It is

nonetheless possible the models we trained learned other information, but this remains to

be tested.

The experiments we conducted in this thesis allow us to conclude that VGS models

implicitly segment their input into sub-units and associate these sub-units to their visual

referent. This process seems to only emerge as a by-product of their main task which is to

minimise a distance between an acoustic and a matching visual stimulus. Our conclusion is

in line with the very recent work of Khorrami & Räsänen (2021) who conclude that “both

sub-lexical and lexical representations can gradually emerge from the interaction of rich

multimodal experiences available to the learner” and that these representations emerge as

“a byproduct of multimodal sensing and interaction with the environment”. However, even

though an implicit segmentation seems to take place in such networks, this segmentation

seems to be less effective than explicitly segmenting the input, as our experiments suggest.

This result is in line prior researches in language acquisition: Havron et al. (2018) show that

literacy — and consequently the knowledge of word boundaries — facilitates the acquisition

of novel nouns.

7.2 Future Works

Given the work we conducted in this thesis, several future works could be carried out:

• Word Activation in CNN-based models. We studied how RNN-based models store

lexical units and activate the representation of individual words by using the gating

paradigm. This methodology could also be applied to analyse the representations

learnt by CNN-based models in order to understand how the representation of a given

word is activated in such models. It would be interesting to know if CNN-based and

RNN-based models converge to the same type of representations, and for example,

if word activation in CNN-based models proceeds in steps as what we observed for

RNN-based models.
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Also, CNN-based models such as that of Harwath & Glass (2017) are able to high-

light specific parts in the visual input.12 This would allow us to better experiment

the competition phase by constructing images that contain instances of objects that

could compete with a chosen target word, also figured in the same image. By ob-

serving the attention maps over the image, one could precisely measure competition

between words. Moreover, using such a CNN-model would enable us to directly re-

produce linguistic experiments that measure word recognition and competition using

eye-tracking devices such as that of Huettig & McQueen (2007). Such an experiment

was recently attempted by Duta & Plunkett (2020), however, the model they use

does not work on raw images. Hence, a CNN-based model would allow us to exactly

reproduce psycholinguistic experiments.

• Image-To-Speech. During an intership we did at the Nara Institute of Science and

Technology (NAIST) in 2019, we tried to implement an Image-To-Speech model sim-

ilar to those recently proposed by (Hsu et al. 2020, Wang et al. 2020) which directly

produce a spoken description using an image as input, without requiring an intermedi-

ary textual representation. The model we implemented — which we did not describe

in this thesis nor in any article — was only able to produce isolated sequences and

not full captions. We believe our model was not able to learn how to produce full

captions as we did not use any discrete units such as in the model proposed by Hsu

et al. (2020), and we used an image encoder that processed raw images, instead of

using an object detector first, as in the work of Wang et al. (2020).

We would like to further work on such model to understand why our model did not

succeed in predicting full captions. We would also like to study how such networks

gradually learn to produce their first sentences, and compare this evolution to that

of children. Indeed, when children learn how to speak, do not start by uttering full

sentences, but rather start by producing isolated words. Later on, they produce two-

word-long sentences and from that point on start to produce full sentences. It would

be interesting to investigate if an Image-To-Speech model goes through the same

steps as children, and if not, investigate why it is the case. Similarly, such experiment

would provide insight on the linguistic development children go through by studying

the representations learnt by such a model.

• Discrete segmentation. The experiments conducted in Chapter 6 reveal that giving an

explicit segmentation improves the models’ ability to corretly map a spoken caption

to its visual context. Even though our experiments show that when a explicit segmen-

tation is not given, the models implicitily segment the spoken input into sub-units,

this implicit segmentation appears to be less effective.

Hence, it would be desirable that the network learns to explicitily segment the spoken

input into sub-units. Several options, which we started to explore, could be possible.

Kreutzer & Sokolov (2018) and Chen et al. (2019) introduced a mechanism that

allows recurrent neural networks to learn how to segment an input stream into sub-

units. These methods essentially consist in predicting a binary value (1 or 0) if the

current vector constitutes a segment boundary or not. Hence, given the GRUPACK.

architecture we develop, it would simply consist in adding a binary classifier for each

time frame. Yet, our initial experiments reveal that the definition of the loss function

is critical so that the network does not learn to either consider each input vector as a

12They implicitly do so as the final matrix is a dot-product between the feature map of the image and the
feature map of the spoken caption. Hence, some parts of the final matrix reflect close proximity between
the two modalities.
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segment of its own, or on the contrary, discard all the vectors except the last one and

consider the full caption as one segment.

Recent work by Shain & Elsner (2020) suggest such approach is possible. However,

their work reveal that their model is unable to learn large linguistic units such as words

but only phoneme-like units. We believe this is the case as the spoken input is not

grounded. Hence, by using a corpus similar to those used in this thesis, we believe

such a model would be able to learn to segment both phoneme-like and word-like

units.

In conclusion, neural models of visually grounded speech models offer invaluable op-

portunities to study and test hypotheses about child language acquisition, thanks to their

ability to model complex interactions across several modalitites. New data sets, such as the

SEEDLingS data set (Bergelson & Aslin 2017) or the data set recently collected by Tsutsui

et al. (2020), which are large scale recordings collected in ecological environments (Dupoux

2018), will allow researchers to simulate language acquisition with more realistic data than

ever before.
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Word

Rank

TRUE Peaks RANDOM Peaks

Word % peak Word % Peak

1 table 3.19 </s> 9.23

2 a 2.22 a 3.48

3 train 1.89 <s> 2.48

4 baseball 1.64 on 2.04

5 room 1.61 of 1.30

6 bathroom 1.52 with 1.27

7 of 1.23 in 1.21

8 in 1.11 man 1.12

9 sitting 1.03 standing 1.07

10 giraffe 0.97 and 1.02

11 bus 0.95 sitting 1.00

12 skateboard 0.94 is 0.88

13 on 0.93 <sil> 0.86

14 kitchen 0.90 the 0.84

15 with 0.84 table 0.83

16 ball 0.84 people 0.77

17 cat 0.77 woman 0.70

18 people 0.76 next 0.65

19 </s> 0.76 holding 0.58

20 and 0.74 two 0.58

21 horse 0.74 street 0.57

22 board 0.73 large 0.57

23 woman 0.72 person 0.56

24 parked 0.69 white 0.55

25 truck 0.69 to 0.54

26 umbrella 0.68 field 0.47

27 snow 0.68 plate 0.44

28 standing 0.67 cat 0.37

29 car 0.67 building 0.37

30 grass 0.65 top 0.37

31 teddy 0.60 group 0.36

32 dog 0.59 tennis 0.36

33 boat 0.58 water 0.35

34 bowl 0.57 down 0.35

35 surfboard 0.55 walking 0.35

36 park 0.51 riding 0.35

37 traffic 0.51 dog 0.34

38 motorcycle 0.50 pizza 0.34

39 tower 0.50 small 0.34

40 hydrant 0.49 black 0.33

Table B.1: Top 40 highlighted words on the COCO data set by GRU1.
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Word

Rank

TRUE Peaks RANDOM Peaks

Word % peak Word % Peak

1 train 2.04 </s> 9.15

2 tennis 1.73 a 3.47

3 toilet 1.53 <s> 2.47

4 baseball 1.50 on 1.96

5 skateboard 1.46 with 1.26

6 dog 1.45 in 1.22

7 cat 1.44 of 1.18

8 giraffe 1.39 man 1.08

9 pizza 1.35 and 1.04

10 kitchen 1.35 standing 1.02

11 street 1.34 sitting 0.93

12 sign 1.26 <sil> 0.87

13 bench 1.15 is 0.87

14 clock 1.12 the 0.86

15 bed 1.10 people 0.79

16 snow 1.10 table 0.76

17 cake 0.99 street 0.66

18 motorcycle 0.98 woman 0.63

19 room 0.96 next 0.61

20 beach 0.92 holding 0.59

21 bus 0.91 person 0.57

22 bathroom 0.86 two 0.56

23 bear 0.85 large 0.52

24 sink 0.84 white 0.52

25 horse 0.84 to 0.51

26 laptop 0.83 bathroom 0.47

27 phone 0.79 field 0.44

28 skis 0.73 train 0.44

29 food 0.73 skateboard 0.43

30 elephant 0.73 baseball 0.42

31 plate 0.72 riding 0.41

32 giraffes 0.71 down 0.41

33 frisbee 0.70 cat 0.37

34 boat 0.70 water 0.35

35 building 0.67 top 0.34

36 flying 0.65 group 0.34

37 surfboard 0.64 small 0.34

38 sheep 0.59 walking 0.34

39 is 0.59 building 0.33

40 sandwich 0.57 young 0.33

Table B.2: Top 40 highlighted words on the COCO data set by GRU5.
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Word

Rank

TRUE Peaks RANDOM Peaks

Word Translation % peak Word Translation % Peak

1 ga SUBJ 3.88 </s> END OF SENTENCE 9.96

2 no GEN 3.17 i+ru to be 5.73

3 o OBJ 2.78 no GEN 3.99

4 neko cat 2.18 ga SUBJ 3.50

5 sukeetoboodo skateboard 2.00 ni LOC, ALL 2.58

6 hikou
part of “hikouki” (“aeroplane”)

“hikou” (“aviation”)
1.62 <s> START OF SENTENCE 2.50

7 sukii ski 1.27 o OBJ 2.02

8 pasokon Personnal Computer 1.26 dansei man 1.68

9 piza pizza 1.21 te particle of reason, state 1.61

10 saafuboodo surfboard 1.17 de LOC 0.97

11 basu bus 1.17 a+ru to be 0.95

12 baiku bike 1.16 josei woman 0.85

13 uma horse 1.16 shiro+i white 0.79

14 banana banana 0.98 to enumeration particle 0.74

15 zou elephant 0.96 <sil> <sil>ENCE 0.64

16 shingou traffic light 0.81 takusan lots of 0.62

17 to enumeration part. 0.81 sukeetoboodo skateboard 0.54

18 saafin surf 0.80 kuro+i black 0.46

19 shimauma zebra 0.77 shi
part of “shiteiru” (”is/are doing”),

inflected form “suru” (to do)
0.44

20 mo+tte holding 0.76 no+tte riding 0.44

21 de LOC 0.73 aka+i red 0.44

22 kuruma car 0.73 hito man 0.41

23 kasa umbrella 0.72 ta+tte even if 0.41

24 kuma bear 0.71 toma+tte stopping 0.39

25 kiiro+i white 0.70 naka inside 0.37

26 benchi bench 0.67 mo+tte with 0.36

27 denwa train 0.63 suwa+tte sitting 0.36

28 kitchin kitchen 0.63 ue above 0.33

29 orenji orange 0.61 ookina big 0.33

30 doonatsu donut 0.59 ta PST 0.33

31 douro road 0.59 hashi+tte running 0.32

32 sunooboodo snowboard 0.59 re part of “reru” (passive) voice 0.31

33 beddo bed 0.59 kodomo children 0.31

34 suwa+tte sitting 0.57 furisubii frisbee 0.30

35 yuki snowboard 0.53 teeburu table 0.30

36 sara plate 0.52 tokei watch 0.29

37 takusan lots of 0.50 kirin giraffe 0.29

38 ha TOP 0.50 saafuboodo surboard 0.28

39 ni LOC, ALL 0.49 ao+i blue 0.28

40 mae in front 0.48 neko cat 0.28

Table B.3: Top 40 highlighted words on the STAIR data set by GRU1.
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Word

Rank

TRUE Peaks RANDOM Peaks

Word Translation % peak Word Translation % Peak

1 ga SUBJ 13.18 </s> END OF SENTENCE 9.97

2 no GEN 5.35 i+ru to be 5.65

3 o OBJ 3.51 no GEN 4.00

4 ni LOC, ALL 3.34 ga SUBJ 3.45

5 </s> END OF SENTENCE 1.67 ni LOC, ALL 2.55

6 kirin giraffe 1.61 <s> START OF SENTENCE 2.47

7 inu dog 1.39 o OBJ 2.05

8 uma horse 1.27 dansei man 1.79

9 baiku bike 1.18 te particle of reason, state 1.64

10 sukeetoboodo skateboard 1.11 a+ru to be 0.95

11 keeki cake 1.09 de de 0.95

12 shimauma zebra 0.98 josei woman 0.91

13 dansei man 0.97 to enumeration particle 0.75

14 pasokon PC 0.96 shiro+i white 0.74

15 nuigurumi stuffed toy 0.96 <sil> SILENCE 0.66

16 sha
end of jitensha (”bus”)

mistakenly tagged as particle
0.93 takusan lots of 0.65

17 tokei watch 0.88 no+tte riding 0.46

18 hyoushiki sign, mark 0.88 aka+i red 0.45

19 furisubii frisbee 0.85 kuro+i black 0.45

20 piza pizza 0.85 shi four 0.44

21 kuruma car 0.85 hito man 0.42

22 shingou sign 0.75 teeburu table 0.40

23 benchi bench 0.74 pasokon PC 0.38

24 kitchin kitchen 0.73 naka inside 0.36

25 de LOC 0.71 ta+tte even if 0.36

26 burokkorii broccoli 0.71 suwa+tte sitting 0.35

27 woman woman 0.67 ue above 0.35

28 tenisu tennis 0.62 mo+tte with 0.35

29 toire toilet 0.62 re
causative particle

used for verbs
0.34

30 hitsuji sheep 0.62 ta PST 0.34

31 beddo bed 0.61 toma+tte stopping 0.33

32 to enumeration particle 0.61 neko cat 0.32

33 ryouri cookery 0.60 sukeetoboodo skateboard 0.31

34 raketto racket 0.58 ookina big 0.31

35 doonatsu donut 0.58 kuruma car 0.31

36 re nominalising suffix 0.55 nuigurumi stuffed toy 0.30

37 kanban signboard 0.55 kodomo children 0.30

38 densha train 0.54 ki+ta wear.PST 0.29

39 terebi television 0.52 sukii ski 0.29

40 senmen
part of “senmendai” (“washbasin”),

senmen∼washing
0.51 o+ka to put 0.28

Table B.4: Top 40 highlighted words on the STAIR data set by GRU5.
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Word

Rank

TRUE Peaks RANDOM Peaks

Word % Peak Word % Peak

1 dog 13.49 <s> 15.64

2 man 7.34 </s> 5.35

3 girl 5.42 <sil> 3.51

4 boy 5.38 a 3.02

5 dogs 4.02 in 1.80

6 people 3.37 man 1.65

7 woman 3.23 dog 1.53

8 child 2.12 on 1.21

9 ball 1.82 the 1.05

10 water 1.49 is 0.89

11 girls 1.38 two 0.84

12 children 1.26 with 0.80

13 boys 1.09 water 0.79

14 basketball 0.94 and 0.78

15 men 0.91 people 0.77

16 a 0.90 black 0.76

17 on 0.90 boy 0.71

18 while 0.87 woman 0.70

19 walking 0.80 white 0.66

20 wall 0.80 girl 0.64

21 person 0.79 wearing 0.62

22 black 0.76 playing 0.56

23 white 0.75 dogs 0.53

24 snowboarder 0.73 standing 0.51

25 rock 0.72 of 0.48

26 football 0.71 young 0.46

27 bike 0.69 child 0.46

28 little 0.64 person 0.42

29 snow 0.61 ball 0.41

30 wearing 0.55 grass 0.40

31 women 0.55 red 0.40

32 skateboarder 0.51 brown 0.40

33 <sil> 0.47 beach 0.39

34 with 0.46 shirt 0.38

35 skateboard 0.46 blue 0.38

36 large 0.41 little 0.36

37 walks 0.41 jumping 0.35

38 rides 0.41 running 0.34

39 walk 0.36 large 0.34

40 in 0.36 are 0.33

Table B.5: Top 40 highlighted words on the Flickr8k data set by GRU1.
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Word

Rank

TRUE Peaks RANDOM Peaks

Word % Peak Word % Peak

1 </s> 5.29 <s> 15.51

2 water 4.01 </s> 5.25

3 <sil> 2.80 <sil> 3.41

4 beach 1.91 a 2.95

5 snow 1.77 in 1.73

6 grass 1.74 dog 1.65

7 shirt 1.46 man 1.59

8 street 1.35 on 1.15

9 a 1.13 the 1.09

10 in 0.96 is 0.95

11 standing 0.89 two 0.89

12 is 0.69 woman 0.79

13 player 0.67 with 0.75

14 to 0.63 boy 0.75

15 field 0.62 black 0.74

16 dirt 0.61 girl 0.74

17 air 0.59 and 0.72

18 pool 0.57 people 0.69

19 swing 0.57 white 0.67

20 snowboarder 0.56 wearing 0.65

21 snowy 0.54 dogs 0.62

22 sitting 0.53 water 0.57

23 sunglasses 0.53 playing 0.57

24 soccer 0.48 standing 0.53

25 through 0.47 young 0.53

26 ocean 0.47 child 0.46

27 sand 0.46 person 0.46

28 the 0.44 of 0.45

29 surfer 0.44 brown 0.44

30 on 0.42 shirt 0.43

31 outside 0.42 red 0.42

32 her 0.42 running 0.42

33 his 0.42 small 0.40

34 with 0.41 grass 0.40

35 grassy 0.41 little 0.38

36 bicycle 0.41 are 0.38

37 camera 0.40 blue 0.37

38 skateboard 0.40 children 0.37

39 small 0.40 ball 0.37

40 together 0.39 jumping 0.35

Table B.6: Top 40 highlighted words on the Flickr8k data set by GRU5.
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Model R@1 R@5 R@10 Ranks

Epoch 15 - Saving Step 39 0.052 0.179 0.279 28.000

Epoch 15 - Saving Step 38 0.052 0.179 0.279 28.000

Epoch 14 - Saving Step 37 0.055 0.180 0.286 27.000

Epoch 13 - Saving Step 36 0.055 0.185 0.291 26.000

Epoch 12 - Saving Step 35 0.058 0.188 0.292 26.000

Epoch 11 - Saving Step 34 0.058 0.184 0.286 27.000

Epoch 10 - Saving Step 33 0.055 0.185 0.290 27.000

Epoch 9 - Saving Step 32 0.054 0.177 0.280 28.000

Epoch 8 - Saving Step 31 0.058 0.185 0.290 27.000

Epoch 7 - Saving Step 30 0.056 0.183 0.288 28.000

Epoch 6 - Saving Step 29 0.053 0.177 0.276 28.000

Epoch 5 - Saving Step 28 0.052 0.174 0.271 29.000

Epoch 4 - Saving Step 27 0.053 0.170 0.269 30.000

Epoch 3 - Saving Step 26 0.048 0.159 0.254 32.000

Epoch 3 - Saving Step 25 0.047 0.158 0.249 33.000

Epoch 2 - Saving Step 24 0.042 0.144 0.237 36.000

Epoch 2 - Saving Step 23 0.033 0.127 0.206 42.000

Epoch 1 - Saving Step 22 0.035 0.127 0.204 42.000

Epoch 1 - Saving Step 21 0.028 0.104 0.175 52.000

Epoch 1 - Saving Step 20 0.023 0.087 0.148 63.000

Epoch 1 - Saving Step 19 0.018 0.072 0.126 74.000

Epoch 1 - Saving Step 18 0.015 0.061 0.107 91.000

Epoch 1 - Saving Step 17 0.013 0.055 0.097 107.000

Epoch 1 - Saving Step 16 0.010 0.045 0.082 131.000

Epoch 1 - Saving Step 15 0.007 0.034 0.062 180.000

Epoch 1 - Saving Step 14 0.007 0.031 0.056 209.000

Epoch 1 - Saving Step 13 0.005 0.028 0.050 253.000

Epoch 1 - Saving Step 12 0.005 0.022 0.041 314.000

Epoch 1 - Saving Step 11 0.004 0.021 0.038 370.000

Epoch 1 - Saving Step 10 0.003 0.015 0.028 462.000

Epoch 1 - Saving Step 9 0.003 0.015 0.027 523.000

Epoch 1 - Saving Step 8 0.003 0.012 0.023 623.000

Epoch 1 - Saving Step 7 0.002 0.009 0.017 743.000

Epoch 1 - Saving Step 6 0.002 0.007 0.013 974.000

Epoch 1 - Saving Step 5 0.001 0.005 0.010 1108.000

Epoch 1 - Saving Step 4 0.001 0.004 0.008 1240.500

Epoch 1 - Saving Step 3 0.001 0.004 0.007 1515.000

Epoch 1 - Saving Step 2 0.001 0.003 0.006 1619.000

Epoch 1 - Saving Step 1 0.000 0.002 0.005 1905.000

Epoch 0 - Saving Step 0 0.000 0.001 0.003 2504.000

Table C.1: Scores obtained by our best model (selected on the validation set) on the COCO

data set. Best epoch is shown in bold.
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Model R@1 R@5 R@10 Ranks

Epoch 15 - Saving Step 39 0.049 0.167 0.265 32.000

Epoch 15 - Saving Step 38 0.049 0.167 0.265 32.000

Epoch 14 - Saving Step 37 0.051 0.172 0.271 30.000

Epoch 13 - Saving Step 36 0.050 0.169 0.266 31.000

Epoch 12 - Saving Step 35 0.053 0.175 0.276 29.000

Epoch 11 - Saving Step 34 0.052 0.177 0.278 29.000

Epoch 10 - Saving Step 33 0.055 0.178 0.279 29.000

Epoch 9 - Saving Step 32 0.054 0.179 0.280 29.000

Epoch 8 - Saving Step 31 0.053 0.174 0.274 30.000

Epoch 7 - Saving Step 30 0.055 0.182 0.282 29.000

Epoch 6 - Saving Step 29 0.051 0.177 0.274 29.500

Epoch 5 - Saving Step 28 0.051 0.175 0.275 31.000

Epoch 4 - Saving Step 27 0.051 0.166 0.264 32.000

Epoch 4 - Saving Step 26 0.049 0.160 0.251 33.000

Epoch 3 - Saving Step 25 0.047 0.156 0.250 34.000

Epoch 2 - Saving Step 24 0.041 0.141 0.226 38.000

Epoch 2 - Saving Step 23 0.034 0.126 0.203 44.000

Epoch 1 - Saving Step 22 0.035 0.122 0.199 44.000

Epoch 1 - Saving Step 21 0.027 0.099 0.170 53.000

Epoch 1 - Saving Step 20 0.022 0.087 0.150 63.000

Epoch 1 - Saving Step 19 0.019 0.073 0.129 77.000

Epoch 1 - Saving Step 18 0.015 0.063 0.110 91.000

Epoch 1 - Saving Step 17 0.012 0.051 0.091 113.000

Epoch 1 - Saving Step 16 0.011 0.042 0.078 149.000

Epoch 1 - Saving Step 15 0.010 0.039 0.070 186.000

Epoch 1 - Saving Step 14 0.007 0.031 0.058 248.500

Epoch 1 - Saving Step 13 0.005 0.023 0.044 326.000

Epoch 1 - Saving Step 12 0.004 0.018 0.036 418.000

Epoch 1 - Saving Step 11 0.003 0.015 0.027 516.000

Epoch 1 - Saving Step 10 0.002 0.011 0.021 635.000

Epoch 1 - Saving Step 9 0.002 0.009 0.018 688.500

Epoch 1 - Saving Step 8 0.002 0.009 0.016 793.000

Epoch 1 - Saving Step 7 0.001 0.005 0.011 917.000

Epoch 1 - Saving Step 6 0.001 0.003 0.006 1243.000

Epoch 1 - Saving Step 5 0.001 0.004 0.007 1256.000

Epoch 1 - Saving Step 4 0.001 0.004 0.006 1491.000

Epoch 1 - Saving Step 3 0.001 0.003 0.006 1512.000

Epoch 1 - Saving Step 2 0.000 0.002 0.005 1872.000

Epoch 1 - Saving Step 1 0.001 0.002 0.005 2068.000

Epoch 0 - Saving Step 0 0.000 0.001 0.002 2529.000

Table C.2: Scores obtained by our best model (selected on the validation set) on the STAIR

data set. Best epoch is shown in bold.
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Model R@1 R@5 R@10 Ranks

Epoch 25 - Saving Step 47 0.024 0.086 0.142 107.000

Epoch 25 - Saving Step 46 0.024 0.086 0.142 107.000

Epoch 24 - Saving Step 45 0.024 0.081 0.137 109.500

Epoch 23 - Saving Step 44 0.021 0.081 0.139 112.000

Epoch 22 - Saving Step 43 0.022 0.079 0.135 103.000

Epoch 21 - Saving Step 42 0.024 0.082 0.140 102.000

Epoch 20 - Saving Step 41 0.021 0.084 0.141 109.000

Epoch 20 - Saving Step 40 0.020 0.082 0.144 106.000

Epoch 19 - Saving Step 39 0.024 0.083 0.141 106.000

Epoch 18 - Saving Step 38 0.020 0.078 0.134 104.000

Epoch 17 - Saving Step 37 0.021 0.080 0.133 102.000

Epoch 16 - Saving Step 36 0.021 0.078 0.132 101.000

Epoch 16 - Saving Step 35 0.019 0.080 0.137 102.000

Epoch 15 - Saving Step 34 0.020 0.076 0.135 99.000

Epoch 14 - Saving Step 33 0.018 0.075 0.132 100.000

Epoch 13 - Saving Step 32 0.018 0.077 0.132 102.000

Epoch 13 - Saving Step 31 0.017 0.075 0.127 104.000

Epoch 12 - Saving Step 30 0.019 0.075 0.131 101.000

Epoch 11 - Saving Step 29 0.018 0.075 0.126 103.000

Epoch 11 - Saving Step 28 0.019 0.074 0.126 104.000

Epoch 10 - Saving Step 27 0.017 0.068 0.120 104.000

Epoch 9 - Saving Step 26 0.013 0.063 0.115 104.000

Epoch 9 - Saving Step 25 0.017 0.069 0.117 107.000

Epoch 8 - Saving Step 24 0.016 0.069 0.117 108.000

Epoch 8 - Saving Step 23 0.013 0.059 0.103 110.000

Epoch 7 - Saving Step 22 0.013 0.062 0.109 111.500

Epoch 7 - Saving Step 21 0.013 0.056 0.101 117.000

Epoch 6 - Saving Step 20 0.013 0.057 0.102 118.500

Epoch 6 - Saving Step 19 0.011 0.052 0.097 121.000

Epoch 5 - Saving Step 18 0.013 0.052 0.093 123.000

Epoch 5 - Saving Step 17 0.012 0.052 0.092 131.000

Epoch 4 - Saving Step 16 0.013 0.049 0.085 134.000

Epoch 4 - Saving Step 15 0.010 0.042 0.074 151.000

Epoch 3 - Saving Step 14 0.008 0.036 0.069 158.000

Epoch 3 - Saving Step 13 0.006 0.038 0.064 162.000

Epoch 3 - Saving Step 12 0.009 0.033 0.057 168.000

Epoch 2 - Saving Step 11 0.008 0.031 0.055 171.000

Epoch 2 - Saving Step 10 0.007 0.021 0.044 189.000

Epoch 2 - Saving Step 9 0.005 0.023 0.043 206.000

Epoch 1 - Saving Step 8 0.006 0.023 0.040 212.000

Epoch 1 - Saving Step 7 0.004 0.017 0.034 222.000

Epoch 1 - Saving Step 6 0.001 0.014 0.029 252.000

Epoch 1 - Saving Step 5 0.002 0.012 0.024 279.000

Epoch 1 - Saving Step 4 0.003 0.013 0.023 314.000

Epoch 1 - Saving Step 3 0.003 0.010 0.023 320.500

Epoch 1 - Saving Step 2 0.002 0.012 0.022 382.000

Epoch 1 - Saving Step 1 0.002 0.007 0.012 484.000

Epoch 0 - Saving Step 0 0.001 0.008 0.012 498.000

Table C.3: Scores obtained by our best model (selected on the validation set) on the Flickr8k

data set. Best epoch is shown in bold.
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Concept P@10 Concept P@1

1 zebra 1.0 41 wine glass 0.7

2 truck 1.0 42 tie 0.7

3 train 1.0 43 person 0.7

4 tennis racket 1.0 44 orange 0.7

5 teddy bear 1.0 45 cell phone 0.7

6 surfboard 1.0 46 bear 0.7

7 sink 1.0 47 remote 0.6

8 sheep 1.0 48 donut 0.6

9 pizza 1.0 49 horse 0.5

10 kite 1.0 50 bottle 0.5

11 giraffe 1.0 51 apple 0.5

12 fire hydrant 1.0 52 umbrella 0.4

13 elephant 1.0 53 potted plant 0.4

14 dog 1.0 54 cup 0.4

15 dining table 1.0 55 chair 0.4

16 clock 1.0 56 handbag 0.3

17 cat 1.0 57 backpack 0.3

18 cake 1.0 58 spoon 0.2

19 bus 1.0 59 oven 0.2

20 boat 1.0 60 book 0.2

21 bird 1.0 61 vase 0.1

22 bicycle 1.0 62 traffic light 0.1

23 bed 1.0 63 knife 0.1

24 baseball glove 1.0 64 fork 0.1

25 banana 1.0 65 carrot 0.1

26 airplane 1.0 66 tv 0.0

27 toilet 0.9 67 toothbrush 0.0

28 skateboard 0.9 68 toaster 0.0

29 refrigerator 0.9 69 suitcase 0.0

30 parking meter 0.9 70 snowboard 0.0

31 laptop 0.9 71 skis 0.0

32 keyboard 0.9 72 scissors 0.0

33 car 0.9 73 mouse 0.0

34 bowl 0.9 74 microwave 0.0

35 baseball bat 0.9 75 hot dog 0.0

36 stop sign 0.8 76 hair drier 0.0

37 sports ball 0.8 77 frisbee 0.0

38 sandwich 0.8 78 couch 0.0

39 motorcycle 0.8 79 broccoli 0.0

40 cow 0.8 80 bench 0.0

Table D.1: List of the 80 target words used for isolated word recognition with P@10.
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of Turkish infants to vowel harmony, in ‘The Acquisition of Turkish in Childhood’, John

Benjamins Publishing Company, pp. 29–56.

URL: https: // doi. org/ 10. 1075/ tilar. 20. 02hon (Cited in page 15.)
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Résumé Étendu en Français

1 Introduction

Dans un laps de temps relativement court, les enfants sont capables d’acquérir leur langue

maternelle, ce qui leur permet de la comprendre et de la parler sans effort. Il s’agit d’un

exploit étonnant, car ils sont capables de le faire sans beaucoup de supervision. Au contraire,

le contexte perceptible environnant semble leur fournir toutes les informations nécessaires

à l’acquisition de leur langue maternelle.

Landau & Gleitman (1985, p. 7) affirment que “l’input de l’enfant consiste en des paires

son/situation, mais que son output final est un ensemble de paires forme/sens, appropriées

à un ensemble infini de situations nouvelles mais bien circonscrites”. La question est la

suivante : comment les enfants passent-ils de paires son/situation à des paires forme/sens ?

L’une des étapes que les enfants doivent franchir est de comprendre que les sons qu’ils

perçoivent constituent des signes conventionnels utilisés à des fins de communication, et non

des sons aléatoires. Cette étape n’est peut-être pas la première que les enfants franchissent,

mais elle est essentielle pour passer de son à forme. La transition des paires son/situation

aux paires forme/sens implique également une étape de segmentation. La première étape de

segmentation à laquelle nous pouvons penser est la segmentation du flux de parole en formes.

En effet, le flux de parole contient des séquences de formes sont cependant connectées les

unes aux autres. Les enfants doivent donc apprendre à segmenter le flux de parole de

manière appropriée afin de découvrir les formes conventionnelles des mots utilisés dans leur

langue maternelle. La deuxième étape de segmentation à laquelle on peut penser consiste à

analyser l’environnement afin d’identifier et d’extraire les acteurs : qui parle, à qui, à propos

de quoi, etc. Alors que la première étape consiste à identifier des schémas récurrents dans

la modalité parlée, l’autre étape consiste à identifier des schémas récurrents dans d’autres

modalités (visuelles, haptiques, etc.). Une fois que les formes ont été extraites du flux de

la parole et que les référents ont été extraits de l’environnement, l’enfant doit apprendre

à les mettre en correspondance. À ce stade, l’enfant est passé de paires son/situation à

des paires forme/référent. L’enfant devient capable d’abstraire les points communs entre

différents référents de la même forme et d’en déduire une signification et cela lui permet

finalement à l’enfant de construire un ensemble de paires forme/sens. Les paires forme/sens

que l’enfant construit doivent être stockées afin d’être facilement accessibles pour analyser

le flux de parole et pour construire ses propres énoncés. Par conséquent, la forme des

mots qui est stockée dans le lexique mental doit être suffisamment spécifique pour ne pas

permettre la reconnaissance de formes de mots dont la prononciation serait similaire, sans

pour autant être trop spécifique afin de tenir compte des variations et d’éventuelles erreurs

de prononciation. Cette étape est communément appelée reconnaissance des mots parlés.

Dans cette thèse, nous nous proposons d’étudier un modèle neuronal de la parole visuelle-

ment contextualisée (visually grounded speech models). Les modèles de parole visuellement

contextualisée sont des modèles qui sont entrâınés pour résoudre une tâche de recherche

d’image à partir d’une requête orale. C’est-à-dire qu’étant donné la description orale d’une

image, ils doivent trouver l’image la plus proche de la description fournie parmi une col-

lection d’images (ou vice-versa).Pour ce faire, ces réseaux doivent apprendre à transformer

de manière appropriée l’image d’entrée et la description orale d’entrée afin qu’il soit fa-

cile de trouver l’une en fonction de l’autre. La tâche que ces réseaux doivent résoudre est

donc très proche de celle d’un enfant qui acquiert sa langue maternelle. En effet, de tels
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réseaux ont comme input des paires son/situation (c’est-à-dire une description parlée et

son image correspondante), et afin de trouver l’image correspondante correcte, nous fai-

sons l’hypothèse que le réseau doit apprendre à transformer cette paire son/situation en

une paire forme/sens. En effet, pour trouver l’image correspondante parmi une collection

d’images à partir d’un énoncé, le réseau doit d’une manière ou d’une autre segmenter le

flux de parole en sous-unités, de sorte que les sous-unités résultantes se réfèrent à des objets

dans l’image. La représentation des unités extraites doit être suffisamment spécifique pour

que, lorsqu’une de ces unités est donnée en entrée au réseau, il ne récupère que les images

présentant des instances auxquelles l’unité parlée fait référence. De même, comme pour

les humains, du côté de l’image, le réseau doit être capable d’abstraire le référent, de sorte

que l’image cible puisse être récupérée, même si l’objet principal de l’image est présenté de

manière non canonique ou dans un environnement encombré. Par conséquent, la tâche pour

laquelle les modèles neuronaux de parole visuellement contextualisée sont entrâınés est très

proche de celle des enfants qui apprennent leur langue maternelle, et plus précisément de

la tâche d’acquisition lexicale. Ils doivent passer par les mêmes étapes qu’un enfant, que

sont : la segmentation, le appariement forme/référent, et la reconnaissance.

Contributions

Dans cette thèse, nous étudions un modèle récurent de parole visuellement contextualisée

(PVC). Comme de tels modèles résolvent une tâche similaire à celle des enfants, qui dé-

couvrent l’ensemble des paires forme/sens de leur langue maternelle, nos analyses visent à

comprendre si les modèles neuronaux le font de la même manière. Dans ce manuscrit, nous

présentons les contributions suivantes :

(i) Nous présentons une extension vocale d’un ensemble de données de description tex-

tuelle d’images (image captioning) qui permet d’entrâıner de modèles de parole visuel-

lement contextualisée. Contrairement à la plupart des jeux de données image/parole

qui sont en anglais, ce jeu de données est en japonais, ce qui nous permet d’étudier,

dans une approche contrastive, l’impact de la langue d’entrée (anglais ou japonais)

sur les représentations apprises par le modèle.

(ii) Nous étudions les poids d’attention des mécanismes d’attention de nos modèles, afin

de comprendre quelles parties du signal de parole sont mises en avant, et dans quelle

mesure elles diffèrent de ce que le hasard prédirait. Nous proposons également une

investigation longitudinale, où nous étudions comment les poids d’attention évoluent

pendant la phase d’entrâınement.

(iii) Nous introduisons une méthodologie issue de la littérature psycholinguistique, le pa-

radigme du gating (Grosjean 1980), qui nous permet d’étudier facilement l’activation

et la compétition des mots parlés dans notre modèle. A notre connaissance, c’est la

première fois qu’une telle méthodologie est utilisée pour étudier les représentations

apprises par les modèles neuronaux de traitement de la parole.

(iv) Nous proposons une méthode permettant d’introduire simplement des informations

linguistiques préalables sous la forme de frontières de segments (frontières de pho-

nèmes, de syllabes ou de mots) dans un modèle neuronal de traitement de la parole.

La méthode que nous proposons permet d’intégrer plusieurs types de frontières, à

différents niveaux de l’architecture neuronale, ce qui permet de prendre en compte

la nature hiérarchique de l’entrée parlée. Cela nous permet d’étudier si la segmen-

tation du signal vocal en sous-unités permet aux modèles d’apprendre une meilleure

correspondance entre les images à leurs descriptions orales.
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2 Informations générales sur l’acquisition du langage chez

l’enfant

L’acquisition du langage désigne le processus par lequel un enfant apprend sa langue ma-

ternelle. Afin d’acquérir sa langue maternelle, une étape que l’enfant doit franchir est la

construction d’un lexique mental (Emmorey & Fromkin 1988). Cependant, la construction

de ce lexique mental est loin d’être facile. En effet, le flux de la parole ne contient pas de

mots bien séparés auxquels l’enfant n’aurait qu’à attribuer un sens. L’enfant doit d’abord

segmenter le flux de la parole en sous-unités et finalement associer un sens à chacune des

sous-unités résultantes.

Ainsi, les étapes fondamentales du traitement et de la compréhension de la parole que les

enfants doivent acquérir pour pouvoir correctement analyser le flux de la parole et construire

un lexique mental — et finalement acquérir leur langue maternelle — sont identifiées par

Di Cristo (2013, pp. 51-52) comme la segmentation, la reconnaissance et l’interprétation ;

étapes que nous détaillons ci-après.

2.1 Segmentation

Les indices utilisés par les enfants pour segmenter le signal de parole en sous-unités peuvent

être classés ainsi : les indices suprasegmentaux, les indices segmentaux, et les indices lexi-

caux. On peut également y ajouter d’autres types d’indices qui seront détaillés à la fin de

cette présente section, qui ne rentrent nettement dans aucune des catégories pré-citées.

2.1.1 Indices suprasegmentaux

Les indices suprasegmentaux désignent les indices qui sont présents dans les caractéristiques

suprasegmentales de la parole. Les caractéristiques suprasegmentales sont des modulations

du signal vocal qui peuvent s’étendre sur plus d’un segment (c’est-à-dire un phone ou

une syllabe). Ces caractéristiques suprasegmentales, regroupées sous le terme générique

de prosodie, comprennent le rythme (tempo et pauses), l’intonation et l’accentuation. La

prosodie assure de nombreux rôles fonctionnels, le principal qui peut être utile au nourrisson

étant sa fonction de démarcation, qui regroupe les unités parlées et que les enfants peuvent

utiliser pour inférer les frontières des mots.

Les enfants utilisent notamment des informations rythmiques pour segmenter le flux

sonore en sous unités. Nazzi et al. (1998) ont montré que les enfants sont sensibles aux

informations rythmiques portées par le signal de parole puisqu’ils sont en effet capables

de distinguer deux langues appartenant à deux classes rythmiques différentes, mais sont

incapables de distinguer deux langues différentes si celles-ci appartiennent à la même classe

rythmique.

Les informations rythmiques étant (principalement) portée par les syllabes accentuées

en anglais, Jusczyk, Cutler & Redanz (1993) ont exploré si les enfants segmentaient le flux

sonore selon l’accentuation des syllabes ; la présence d’une frontière de mot étant fortement

liée à la présence d’une syllabe accentuée (Cutler & Norris 1988). Jusczyk, Cutler & Redanz

(1993) concluent que les enfants de 7,5 mois segmentent le signal sonore de sorte que les

unités résultantes aient le motif accentué/non-accentué confirmant ainsi l’hypothèse des

auteurs. Ce résultat a également été trouvé pour des enfants néerlandophones (Houston

et al. 2000). Pour les enfants français, les travaux de Nazzi et al. (2006) et Nazzi (2008) (et de

Bosch et al. 2013 pour le castillan et catalan) montrent que l’unité de segmentation adoptée

par les enfants est la syllabe ; puisque ce sont des langues où l’unité de battement utilisée

pour marquer le rythme est la syllabe et non l’accentuation. Ainsi, les sous unités dégagées
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ne sont pas extraites selon l’accentuation des mots, mais uniquement selon la conformation

à une unité syllabique correcte. Cependant, Nazzi et al. (2006) notent que les enfants

francophones segmentent le flux sonore de manière systématique plus tardivement que les

enfants anglophones ou néerlandophones (16 mois chez les enfants francophones contre 10

pour les enfants anglophones sur une tâche de segmentation de mots dissyllabiques).

Outre les indices suprasegmentaux déjà mentionnés, les enfants sont également sensibles

à des indices suprasegmentaux affectant des unités plus larges, telles que celles des phrases

phonologiques. Christophe et al. (2003) ont montré que la reconnaissance des mots chez les

enfants de 13 mois est effectivement contrainte par les frontières des phrases phonologiques.

Les enfants reconnaissent effectivement un mot cible familier (par exemple, paper) s’il fait

partie d’une phrase phonologique (“[The college][with the biggest paper forms][is best]”)

mais pas s’il est à cheval sur deux phrases phonologiques (“[The butler][with the highest

pay][performs the most]”). Ainsi, en prêtant attention aux indices signalant les frontières de

phrases prosodiques, les enfants peuvent déduire les frontières de mots, puisqu’une frontière

de phrase prosodique correspond nécessairement à une frontière de mot. Johnson et al.

(2014) montrent d’ailleurs que les enfants prêtent une attention particulière aux fins de

phrases phonologiques et sont capables de reconnaitre un mot si celui-ci est présent au

début ou à la fin d’une phrase phonologique.

2.1.2 Indices segmentaux

Les indices segmentaux sont des indices directement liés aux segments (c’est-à-dire

phone[me]s) d’une langue. Comme Mattys et al. (2005), nous regroupons sous le terme

d’indices segmentaux les indices phonotactiques et les indices acoustico-phonétiques.

Jusczyk, Friederici, Wessels, Svenkerud & Jusczyk (1993) ont montré que les enfants

de 9 mois étaient sensibles aux indices phonotactiques, c’est-à-dire aux informations qui

indiquent si une séquence de phonèmes constitue une séquence légale ou non dans son en-

châınement. Ainsi les enfants de 9 mois préfèrent les pseudo-mots dont les séquences de

phonèmes sont légales et non des pseudo-mots constitués de séquences illégales. Jusczyk

et al. (1994) montrent que les enfants préfèrent les séquences légales les plus fréquentes

face à celles qui sont légales, mais moins fréquentes. Mattys & Jusczyk (2001b) ont mon-

tré que les enfants se servent effectivement d’indices phonotactiques afin de segmenter la

parole en sous unités et segmentent une séquence [...]C·CVC·C[...] en [...]C#CVC#C[...]

si C·C constituent des séquences phonotactiques plus susceptibles d’apparâıtre en frontière

de mot qu’à l’intérieur d’un mot. MacKenzie et al. (2012) ont montré que la connais-

sance d’informations phonotactiques contraint l’acquisition de mots nouveaux. Ainsi, chez

des enfants anglophones de 12 mois, des (pseudo-)mots nouveaux ne peuvent être asso-

ciés à des objets nouveaux que si ceux-ci comportent des séquences phonotactiques légales.

L’harmonie vocalique, qui peut être considérée comme un cas spécial de contrainte pho-

notactique ; les segments concernés n’étant simplement pas adjacents ; est également un

indice qui peut être utilisé par les enfants afin d’extraire des mots du signal sonore. Ketrez

(2013) a en effet montré qu’en turc, lorsque l’harmonie vocalique est rompue, cela signale

très probablement une limite de mot, et suggère que les enfants pourraient utiliser cette

propriété pour inférer les limites des mots. Mintz et al. (2018) montrent ainsi dans une

tâche d’apprentissage d’une langue artificielle que des enfants anglophones segmentent ef-

fectivement les mots en fonction de l’harmonie des voyelles et que cet indice constitue donc

un indice viable pour extraire des unités lexicales.

Les enfants sont également sensibles à de fines variations acoustiques et se servent

d’indice de coarticulation ainsi que d’indices d’ordre allophonique afin de déterminer la

présence d’une frontière de mot. Christophe et al. (1994) ont par exemple montré que des
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nourrissons de 3 jours font la différence entre un séquence dissyllabique CVCV extraite

d’un mot (par ex. /mÃta/ dans “sédimentation”) et la même séquence CVCV à cheval

sur une frontière (par exemple /mÃ#ta/ dans “déguisement talentueux”). Ils sont donc

capables de différencier deux réalisations différentes d’une même séquence phonologique à

partir d’indices acoustiques fins (expliquant ainsi la sensibilité aux phrases phonologiques).

Des résultats similaires ont été observés en anglais par Hohne & Jusczyk (1994) (différence

“nitrate” [naIúhô
˚
eIt^] et “night rate” [naIt^ôeIt^]). Plus récemment, Mattys & Jusczyk (2001a)

ont montré que les enfants utilisent cette sensibilité aux variations allophoniques pour dé-

terminer si une séquence constitue un mot ou non, et ainsi segmenter le flux sonore en

sous-unités.

Finalement, les enfants utilisent également des indices statistiques afin segmenter le flux

sonore en sous-unités. Saffran et al. (1996) ont notamment montré que les enfants utilisent

les probabilités de transition entre syllabes afin de poser des frontières de mots, considérant

les séquences des syllabes qui ont une forte probabilité de transition entre elles comme

des unités, tandis que les séquences de syllabes ayant une faible probabilité de transition

entre elles ne sont pas considérées comme formant une unité. Pelucchi et al. (2009b) ont

confirmé ces résultats sur de l’italien. Les travaux de Pelucchi et al. (2009a) montrent que les

enfants se servent aussi bien des probabilités de transitions progressives (forward transition

probability) que de probabilités de transition régressives (backward transition probability)

2.1.3 Indices lexicaux

Dès que l’enfant a isolé un certain nombre de formes de mots, il peut les utiliser afin d’isoler

les mots qui précèdent et/ou suivent le mot connu. White et al. (2010) ont inventé le terme

“segmentation par soustraction lexicale” et le définit comme “l’utilisation de la connaissance

lexicale pour imposer une structure de segmentation à l’entrée de la parole”. Bortfeld et al.

(2005) ont ainsi montré que les nourrissons de 6 mois utilisaient déjà des mots familiers

(“mommy”, “daddy”, ou le propre nom de l’enfant) pour segmenter le mot suivant dans

le flux de parole. Plus récemment, Bergelson & Swingley (2012) ont montré que les très

jeunes enfants connaissent de nombreux mots courants (yaourt, banane, etc.), mots qui

peuvent ainsi être utilisés pour aider la segmentation. Shi et al. (2006) et Shi & Lepage

(2008) ont montré respectivement que chez des enfants anglophones et francophones, les

déterminants sont utilisés par les enfants afin de segmenter le signal sonore en sous-unités.

Un phénomène similaire a été mis en avant en japonais par Haryu & Kajikawa (2016),

en montrant notamment que les enfants japonais se servent de la particule “ga” afin de

déterminer des frontières de mots. Finalement, Johnson et al. (2014) rapportent que 80%

des mots entendus en isolation par les enfants sont des interjections (oh, ah, etc.) et que

ceux-ci pourraient également servir de support à la segmentation.

2.1.4 Autres indices

Les enfants peuvent également se servir d’autres indices afin de déterminer les frontières

de mots. Notamment, le langage bébé (également appelé mamanais) permettrait aux en-

fants de mieux segmenter le flux sonore. En effet, le langage bébé est caractérisé par de

nombreuses variations par rapport au langage adulte, notamment, une exagération de la

variation de la fréquence fondamentale ou bien encore des pauses plus longues. Thiessen

et al. (2005) concluent dans leur étude que le langage bébé permet aux enfants de 7,5 mois

de mieux segmenter le flux sonore en mots, et Ma et al. (2011) ont montré que le langage

bébé facilite l’acquisition (en termes de rétention) de mots nouveaux. Cependant, même

si le langage bébé peut aider les enfants il n’est en rien nécessaire. Il existe en effet des
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populations dans lesquels la parole est peu adressée aux enfants tant qu’ils ne sont pas

capables de parler (voir Cristia et al. 2019), et qui arrivent malgré tout à apprendre leur

langue maternelle.

Les indices que nous avons présentés l’ont été en isolation, comme si les enfants faisaient

usage d’un seul indice de segmentation à la fois. Or, ce n’est pas le cas et les enfants

utilisent de nombreux indices de manière concomitante cela permettant de “rendre une

‘explosion combinatoire’ moins probable” (Thiessen & Erickson 2009, p. 44). Johnson &

Tyler (2010) montrent ainsi que l’utilisation de probabilités de transition ne semble être

pleinement efficace que lorsqu’elles sont associées à d’autres indices. Cela est confirmé par

les travaux de Mersad & Nazzi (2012) qui ont montrés dans leur expérience que les enfants

utilisaient correctement les probabilités de transition entre syllabes seulement après être

parvenus à extraire de la séquence présentée un mot connu (dans leur expérience, le mot

maman). Si ce mot connu ne figurait pas dans la séquence, alors les enfants ne parvenaient

pas à utiliser les probabilités de transitions.

2.1.5 Conclusion

Ainsi, les enfants utilisent de nombreux indices pour segmenter le flux de parole. Ceux-ci

sont de nature variée, allant d’indice supra-segmentaux à des indices infra-segmentaux en

passant par des indices segmentaux. Il semble donc que les enfants utilisent une combi-

naison d’indices descendants (par exemple, des mots isolés) et ascendants (par exemple, la

phonotactique, les transitions de probabilité, etc.) afin de segmenter le flux de parole. Ces

deux approches sont nécessaires — car, par exemple, la découverte des schémas phonotac-

tiques réguliers dans les mots nécessite la connaissance d’un ensemble de mots individuels

— et complémentaires — car en retour, les schémas phonotactiques déduits permettent à

l’apprenant de segmenter encore plus de mots.

2.2 Appariement

Dans les sections précédentes nous avons considéré le langage in vacuo comme si les mots

existaient pour et par eux-mêmes, déconnectés de tout contexte. Ce n’est bien sûr pas le

cas :

Le point important[...] est que le langage n’a d’existence que par rapport à

l’ordre physique et mental des choses. Le langage n’est pas une sorte de système

indépendant dans lequel on peut puiser à volonté. Les aspects de la langue n’ont

de signification que dans la mesure où ils se rapportent à des aspects du monde.

(Dixon 2012, p. 434)

Ainsi, les informations contextuelles jouent un rôle décisif dans l’acquisition lexicale : on

peut notamment citer les informations contextuelles liées à des percepts (vision, toucher,

odorat) qui vont venir guider l’enfant dans l’acquisition de sa langue maternelle.

2.2.1 Théorie de l’esprit et attention conjointe

Des chercheurs tels que Bloom affirme que “la covariation statistique entre le mot et le

percept n’est ni nécessaire ni suffisante pour l’apprentissage des mots.” (Bloom 2002, p. 59)

et que la mise en correspondance des mots et des référents et, en fin de compte, l’acquisition

du sens semblent exiger quelque chose de plus. En effet, il existe un nombre infini de

possibilités parmi lesquelles l’enfant doit choisir (voir le célèbre exemple de Quine, gavagai,

Quine 1964).
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Pour Tomasello (2009), la lecture d’intention (intention reading) est l’ingrédient né-

cessaire à l’acquisition de la langue par les enfants, notamment lorsqu’il s’agit d’inférer le

référent d’une forme verbale donnée. De la même manière, Bloom (2002) soutient que “les

enfants utilisent leur psychologie näıve ou théorie de l’esprit pour comprendre à quoi les

gens font référence lorsqu’ils utilisent des mots” et qu’il est nécessaire de disposer d’une

théorie de l’esprit pour contextualiser de manière appropriée ce qui est dit. Le fait de

posséder une théorie de l’esprit permet aux enfants d’entrer dans des moments d’attention

conjointe. Un moment d’attention conjointe peut être défini comme “un épisode triadique

d’interaction impliquant un interlocuteur, un nourrisson et un objet” (Rudd & Johnson

2011). La nécessité de partager des moments d’attention conjointe semble être confirmée

par des travaux tels que ceux de Tomasello & Todd (1983) qui montrent que les enfants qui

partagent de longues périodes d’attention partagée avec leurs interlocuteurs ont un voca-

bulaire perceptif globalement plus étendu que ceux pour lesquels les moments d’attention

conjointe sont peu fréquents. Les travaux de Moore et al. (1999) semblent aller également

dans ce sens en montrant que les enfants sont plus aptes à apprendre un nouveau mot si

celui-ci a été vu dans un moment d’attention conjointe.

2.2.2 Assomption, biais et erreurs

Même si une théorie de l’esprit et les moments d’attention conjointe semblent décisifs pour

acquérir une langue, il semble que l’acquisition du lexique soit guidée par de nombreux

biais et assomptions que les enfants feraient sur le monde. On peut notamment citer les

travaux de Markman (1990) qui postule l’existence de plusieurs biais que sont l’hypothèse

de l’objet entier, l’hypothèse taxonomique, et l’hypothèse d’exclusivité mutuelle. Ainsi le

premier guiderait les enfants afin que les étiquettes des mots se réfèrent aux objets dans

leur globalité et non à des portions de ceux-ci. Le second stipule que les étiquettes de mot

s’étendent aux objets similaires, c’est-à-dire aux objets ayant des caractéristiques similaires

(par exemple, chien pour un berger allemand ou un bouledogue). Le dernier affirme qu’il

existe une bijection entre une forme verbale et ses référents : pour une étiquette donnée, il

n’existe qu’un seul référent (conceptuel) associé, et un référent ne peut être désigné que par

une seule étiquette canonique. (Clark 1987) mentionne deux principes complémentaires : le

principe de contraste et le principe de conventionnalité. Le principe de contraste dit que

“chaque paire de mots entre en contraste par leur sens”. Autrement dit, l’enfant considère

que deux formes verbales ne sont pas des synonymes exacts. Ce principe encouragerait

l’enfant à explorer son environnement afin de trouver un référent possible afin de ne pas

assigner deux étiquettes différentes à un même mot. Le principe de conventionnalité stipule

que “pour certaines significations, il existe une forme conventionnelle que les locuteurs

s’attendent à voir utilisée dans la communauté linguistique”.

Il arrive parfois que les enfants fassent des erreurs d’appariement et attribuent la mau-

vaise étiquette à un référent donné. Rescorla (1980) fournit une typologie des principales

causes de surextensions : sur-inclusions catégorielles où une étiquette est utilisée pour un

référent proche du référent réel (bébé pour les enfants), sur-extensions analogiques où une

étiquette est utilisée pour un référent qui présente une similarité avec le référent réel (tex-

titballe pour les billes ou les pommes), et énoncés prédicats qui sont holophrastiques (par

exemple chien en montrant un panier désigner un chien absent). Rescorla (1980) estime

qu’un tiers des premiers mots de l’enfant sont des surextensions, et qu’environ trois quarts

des extensions sont soit des surinclusions catégorielles, soit des surextensions analogiques,

la plupart d’entre elles étant faites sur la base de la “similarité perceptuelle” (par opposition

à la similarité fonctionnelle). Cependant, bien souvent, la similarité perceptuelle évoquée

dans les études se limite à une similarité visuelle.
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2.2.3 Modalité visuelle

La vision joue un rôle central dans l’acquisition du langage. En effet, “c’est en grande

partie la vision qui dirige l’attention du nourrisson sur les personnes, les objets et les

événements ; la vision est importante pour la coordination de l’attention entre le parent et

l’enfant ; et elle contraint souvent (surtout dans la culture anglo-américaine) le contenu du

langage adressé à l’enfant” (Andersen et al. 1993).

Il semble que la capacité des nourrissons à associer systématiquement un référent visuel

à mot n’apparaisse que vers l’âge de 12 mois. Werker et al. (1998) montrent par exemple

qu’à 8 et 12 mois les enfants en sont incapables, cependant ils le sont à 13 ou 14 mois.

Smith & Yu (2008) quant à eux trouvent que des enfants de 12 mois en sont capables. Ce

dernier résultat semble donc être en contradiction avec Werker et al. (1998). Cependant,

comme cette capacité semble se développer dans un laps de temps très court (entre le 12e

et 13e mois), il est raisonnable d’observer de légères différences d’une expérience à l’autre,

surtout si les paramètres expérimentaux sont différents.

Pour mesurer l’important de l’input visuel sur l’acquisition du langage, nous pouvons

nous intéresser à l’acquisition du langage chez les enfants aveugles de naissance. La cécité,

même si elle n’empêche une maitrise parfaite de la langue maternelle à l’âge adulte (Landau

& Gleitman 1985), peut entrâıner des retards dans la prime enfance. Notamment, on

constate chez les enfants aveugles une tendance à parler d’événements passés plutôt que de

“l’ici et maintenant” . Ainsi, en se concentrant sur des événements passés, l’enfant essaie de

recréer une situation dans laquelle il sait que la personne qui s’occupe de lui et lui-même

ont partagé une expérience commune dont ils peuvent parler et essaye ainsi de créer une

situation d’attention partagée, à défaut de pouvoir en créer ou percevoir une dans “l’ici

et le maintenant” (Andersen et al. 1993). Pour les mêmes raisons, les enfants aveugles

souffrent également d’un manque de décentration et ont une forte tendance à initier des

conversations centrées sur eux-mêmes ou leur environnement immédiat (Andersen et al.

1984, Peltzer-Karpf 1994). On constate également chez les enfants aveugles une capacité de

généralisation moindre. En effet, le fait d’être privé de la vue les prive de l’accès simultané à

de nombreuses caractéristiques (forme, couleur, texture, etc.) qui constituent de précieuses

informations pour généraliser. De plus, pour l’enfant aveugle, explorer le monde requiert

un effort conscient d’exploration de son environnement, ce qu’il ne peut faire que lorsqu’il

est en mesure de se déplacer, alors que pour l’enfant voyant, percevoir le monde (au moins

visuellement) ne nécessite pas d’efforts conscients (Dunlea 1989, p.10). De même que pour la

généralisation, on constate une capacité de conceptualisation moindre chez l’enfant aveugle.

Selon Dunlea (1989), ils ne parviennent pas à saisir la nature symbolique du langage et

ne parviennent pas à appliquer de manière appropriée les mots ou les morceaux de mots

qu’ils apprennent à de nouvelles situations et d’après Andersen et al. (1984) ont tendance

à répéter mot pour mot ce qu’ils entendent sans analyse supplémentaire (c’est-à-dire sans

segmentation) et tendent à répéter des routines pré-faites.

Ainsi, la vision semble fournir des informations essentielles au jeune enfant afin de lui

permettre d’acquérir sa langue maternelle. Plus particulièrement, la vision semble aider

l’enfant à conceptualiser le monde et à établir des généralisations.

2.3 Reconnaissance

La reconnaissance des mots parlés peut être définie comme le processus d’accès aux éléments

lexicaux du lexique mental à partir des motifs phonologiques perçus dans le signal de parole

(Magnuson et al. 2013). En d’autres termes, cela implique de mettre en correspondance ce

qui est entendu avec les éléments lexicaux stockés dans le lexique mental. Nous passons en
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revue dans cette section plusieurs modèles de reconnaissance des mots.

2.3.1 Modèle de la Cohorte

Le modèle de la Cohort (Marslen-Wilson & Welsh 1978) est l’un des tout premier modèle

tentant de rendre compte de la manière dont les humains reconnaissent et extraient les mots

du flux de la parole. Selon ce modèle, la reconnaissance des mots parlés se déroule en trois

étapes simultanées : accès, sélection, et intégration.

L’accès consiste à activer un ensemble de mot-formes dans le lexique mental qui corres-

pondent à l’entrée acoustique. Chaque mot-forme est associée à une unité d’activation, ce

qui permet l’activation de plusieurs formes de mots à la fois. Ces unités ne sont activées que

si l’entrée acoustique perçue correspond exactement à la forme phonologique internalisée.

Tous les mots qui commencent par la séquence sonore perçue sont activés, et forment ainsi

une cohorte. Lorsqu’il y a une incompatibilité entre la forme internalisée d’un mot et l’input

perçu, alors ce mot est retiré de la cohorte. Ce processus d’élagage des mots de la cohorte

constitue l’étape de sélection. Finalement l’intégration consiste à vérifier que les propriétés

sémantiques et syntaxiques des mots activés concordent avec le reste de la phrase, sinon, le

ou les mots incompatibles sont retirés de la cohorte. Ce processus continue jusqu’à ce qu’il

ne reste plus qu’un mot dans la cohorte.

On peut citer plusieurs problèmes avec ce modèle de cohorte, notamment le fait qu’il

suppose que les stimuli acoustiques perçus correspondent exactement aux formes phonolo-

giques internalisées. Or ceci n’est pas réaliste puisque les humains peuvent reconnaitre un

mot même mal prononcé. De même il est possible de reconnaitre un mot bien prononcé

mais sémantiquement incorrect dans le contexte phrastique, bousculant ainsi l’hypothèse

de l’étape d’intégration.

2.3.2 Modèle TRACE

Le modèle Trace s’appuie sur le modèle Cohort en conservant ses “caractéristiques posi-

tives majeures” (McClelland & Elman 1986a), que sont l’activation simultanée, la sélection,

et l’élagage interactif, tout en essayant de surmonter les problèmes qui ont été abordés

ci-dessus.

L’input acoustique, contrairement au modèle de la Cohort, n’est plus perçu en termes

de phonèmes, mais en termes de stimuli acoustiques. Le modèle TRACE est organisé en

couches, la première traitant les stimuli acoustiques, la deuxième les phonèmes et la troi-

sième les mots. La couche acoustique active certaines unités représentant des phonèmes

dans la couche des phonèmes, qui eux-mêmes activent des unités représentant des mots

dans la couche lexicale. L’activation dans ce modèle dépend de l’adéquation entre les per-

cepts acoustiques avec les représentations internalisés, mais ne nécessite pas une adéquation

parfaite ; autorisant ainsi les erreurs de prononciation et/ou de perception. Les phonèmes

activent les mots dans lesquels ils apparaissent, peu importe leur position. Les unités à

l’intérieur d’une même couche (phonème, ou mot) sont reliées par des connexions inhibi-

trices de sorte que les unités les plus activées inhibent dans une certaine mesure l’activation

des autres si elles ne correspondent pas à l’entrée acoustique aussi bien que les unités les

autres unités plus activées.

Contrairement au modèle Cohort, ce modèle est capable de gérer des châınes de mots

connectés. Dans ce modèle, le flux vocal est implicitement segmenté lorsque les mots sont

reconnus. Ce modèle apporte une amélioration majeure par rapport au modèle Cohort : les

mots peuvent être reconnus après leur fin, et les mots peuvent être activés à partir de

n’importe quel point, relâchant ainsi la contrainte de correspondance exacte de l’apparition
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des mots que suppose le modèle de la Cohort. La plus grande amélioration apportée par

le modèle Trace est la compétition active entre les mots, car les mots sont réellement en

compétition les uns avec les autres grâce aux connexions inhibitrices entre les unités d’une

même couche.

2.3.3 Shortlist

Le modèle TRACE dans son implémentation est computationnellement irréaliste. En effet,

il suppose qu’un phonème donné active l’ensemble des mots dans lequel il apparait. Cela est

possible pour un vocabulaire limité, mais pas pour un vocabulaire d’une taille plus élevée.

Le modèle Shortlist peut être vu comme un modèle hybride entre le modèle de la Cohort

et Trace. Certes, un phonème active, comme dans TRACE, l’ensemble des mots dans le-

quel il apparait, mais les mots pour lesquels l’activation est trop faible ne sont plus considé-

rés comme des cibles potentielles. Ainsi, le nombre de mots activés de manière simultanée

est limité à un petit nombre (a shortlist) et la compétition inter-mots limitée à ceux de

la shortlist. Par conséquent, ce modèle est plus léger en termes de calculs que le modèle

Trace— car seul un sous-ensemble du lexique est considéré comme un candidat valide —

tout en préservant la plupart de ses caractéristiques originales.

2.3.4 Modèle de la Cohorte distribuée

Le modèle de la cohorte distribuée (MCD, Gaskell & Marslen-Wilson 1997) constitue un

changement de paradigme. Alors que les modèles précédents incorporaient explicitement

plusieurs niveaux de calcul (couche de caractéristiques, couche phonétique, couche lexicale),

le MCD ne le fait pas. En effet, le MCD utilise un simple réseau neuronal récurrent (Elman

1990).

Le réseau reçoit en entrée une séquence de mesures phonétiques et est entrâıné à prédire

un vecteur sémantique et un vecteur phonologique. Dans ce modèle, le concept d’activation

est différent des autres modèles. En effet, alors que dans les autres modèles, une valeur est

attribuée à chaque mot du lexique — cette valeur représentant la force de l’activation —

il n’est pas possible ici d’avoir une telle valeur. Au lieu de cela, l’activation est représentée

par la proximité du vecteur sémantique prédit avec celui des mots du lexique. L’activation

simultanée de plusieurs mots est toujours possible, mais elle est cependant implicite. En

effet, le vecteur sémantique prédit peut être considéré comme un “mélange” des représenta-

tions pertinentes. Activer un mot plus qu’un autre peut être considéré comme “modifier ce

mélange” et “peut être interprété en termes de mouvement dans l’espace sémantique”.

Ainsi, dans ce modèle, la notion de caractéristique acoustique, de phonème et d’unité

lexicale est implicite puisque toutes les couches sont capables de représenter cette infor-

mation simultanément. Cependant, dans leur expérience, les auteurs ne testent que la

reconnaissance de mots individuels et non de phrases complètes. Ainsi, même si ce modèle

obtient des résultats intéressants (en montrant par exemple que les mots les plus fréquents

sont ceux qui sont activés prioritairement), il ne réalise aucune segmentation de l’entrée

parlée.

2.3.5 Conclusion sur la reconnaissance de mots parlés

Tous les modèles de reconnaissance des mots supposent que la reconnaissance des mots se

déroule en plusieurs étapes : une activation, une compétition et la reconnaissance finale.

Néanmoins, la manière dont ces trois étapes sont réalisées varie d’un modèle à l’autre.

Cependant, tous ces modèles s’accordent sur le fait que la reconnaissance de mots implique

nécessairement l’activation simultanée d’un ensemble de mots candidats. Cet ensemble de
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mots est itérativement élagué si l’entrée acoustique est trop éloignée de la représentation

internalisée, de sorte qu’il ne reste finalement qu’un seul mot.

2.4 Conclusion

Dans ce chapitre, nous avons examiné les stratégies utilisées par les enfants pour segmenter

l’entrée parlée en sous-unités. Nous avons montré que les enfants utilisent un large éventail

de stratégies pour trouver des mots en se servant d’indices suprasegmentaux, segmentaux

et infrasegmentaux. Nous avons ensuite présenté plusieurs modèles de reconnaissance de

mots qui tentent de rendre compte de la manière dont les humains sont capables d’activer

et de récupérer les unités lexicales du lexique mental. Tous les modèles de reconnaissance

de mots s’accordent sur le fait qu’une stratégie de reconnaissance réussie consiste à activer

simultanément plusieurs unités lexicales à la fois. Enfin, nous avons montré que l’acquisition

du langage est un phénomène multimodal qui implique toutes les capacités perceptives de

l’enfant, et notamment que la vision fournissait à l’enfant des informations précieuses pour

acquérir sa langue maternelle.
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3 Informations générales sur le traitement automatique de la

parole et la découverte d’unités lexicales

3.1 Traitement non supervisé de la parole & notion de grounding

Le travail que nous menons dans cette thèse s’inscrit dans le cadre du traitement non

supervisé de la parole, et la principale motivation de celle-ci est de concevoir des modèles de

traitement automatique de la parole plus proches du traitement humain de la parole, qui ne

requiert pas ou peu de supervision. Par exemple, un enfant qui apprend sa langue maternelle

n’a pas besoin d’étiquettes textuelles, mais utilise plutôt des signaux de supervision faibles,

tels que des indices visuels. Ces signaux constituent des signaux de supervision faibles, car

ils limitent le processus d’apprentissage en l’ancrant dans le contexte.

Le travail effectué dans cette thèse appartient donc aux “approches sensorielles” des

modèles de traitement de la parole, telles que définies par Glass (2012). Les modèles “sen-

soriels” de traitement de la parole sont des modèles qui n’ont besoin que de parole couplée

à des données sensorielles pour fonctionner. En d’autres termes, ces modèles ne nécessitent

pas de données annotées ni d’expertise humaine pour fonctionner et “se rapprochent de

l’acquisition du langage oral humain” selon Glass (2012).

L’une des premières approches de traitement non supervisé de la parole est celle intro-

duite par Park & Glass (2005). La méthodologie qu’ils proposent permet de découvrir des

unités lexicales à partir d’un signal de parole, sans avoir besoin que celui-ci soit préala-

blement transcrit (Park & Glass 2008). La méthodologie proposée de Segmental-DTW est

basée sur la mesure du DTW (Dynamic Time Warping) qui permet de mesurer la similarité

de deux séquences. Les autres modèles de traitement non supervisé de la parole, qui ont

pour but d’extraire des unités lexicales ou de segmenter l’entrée parlée se base principale-

ment sur des modèles bayésiens. Lee et al. (2015) proposent par exemple de combiner la

découverte non supervisée d’unités acoustiques avec des modèles de segmentation bayésien

tels que celui de (Goldwater 2006). Plus récemment, on peut citer le travail de Kamper

(2017) qui propose un modèle bayésien permettant de conjointement inférer des frontières

dans le signal de parole tout en clusterisant les unités qui résultent de la segmentation

menée.

Un fait surprenant des travaux de découverte non supervisée de termes et de lexique

évoquée ci-dessus est que le repérage et la segmentation des mots sont effectués sur la

base de la forme uniquement, sans qu’aucun autre indice contextuel ne soit utilisé. Le

langage n’est pas un système indépendant, et ce qui lui donne sa substance est qu’il est

lié au monde physique. Nous avons utilisé l’exemple des enfants aveugles pour montrer

que, lorsqu’ils sont privés d’un type d’entrée sensorielle, à savoir la vision, l’acquisition du

langage est considérablement affectée. Pour établir une analogie, les modèles de découverte

et de segmentation des termes sont en fait entrâınés comme des nourrissons privés de sens,

qui ne se fondent que sur la forme. Il semble ainsi qu’une stratégie de segmentation de la

parole adéquate doive inclure une composante sémantique. Dans leurs travaux, Bender &

Koller (2020) soutiennent que :

si la forme est complétée par des données contextuelles de quelque nature que ce

soit, il est concevable que le sens puisse être appris dans la mesure où l’intention

communicative est représentée dans ces données.

Par conséquent, l’ancrage des données linguistiques à des connaissances externes semble

être une étape nécessaire pour accéder au sens. Pourtant, que signifie plus précisément le

terme grounding ? Si l’ancrage contextuel consiste simplement à ajouter des connaissances
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externes, les modèles de reconnaissance vocale peuvent être considérés comme des modèles

textuellement ancrés, puisque le texte, qui est une connaissance externe, est ajouté au

modèle. Roy (2005) définit l’ancrage comme suit :

La relation entre les mots et le monde physique, et par conséquent notre capacité

à utiliser des mots pour faire référence à des entités dans le monde, fournit

les fondements de la communication linguistique. Les approches actuelles de

la conception des systèmes de traitement du langage passent à côté de cette

connexion critique, qui est obtenue par un processus que j’appelle grounding. [...]

Le grounding linguistique fait référence aux processus spécialisés dans la mise

en relation des mots et des actes de parole avec l’environnement de l’utilisateur

de la langue. (Roy 2005)

Le grounding implique donc d’ajouter aux données linguistiques des données externes

non-linguistiques qui reflètent d’une certaine manière le monde physique. Les données

externes doivent également refléter dans une certaine mesure l’intention communicative

des données linguistiques, comme le mentionne Bender & Koller (2020). Cette dernière

contrainte est également visible dans la définition de Roy (2005), puisque les “actes de pa-

role” résultent nécessairement d’une intention communicative. Par conséquent, les modèles

grounded désignent une classe de modèles informatiques qui traitent une certaine forme

linguistique — du texte, ou bien de la parole — en conjonction avec une autre source

d’information provenant du monde physique. Le fait que deux modalités soient traitées

en conjonction est nécessaire, mais pas suffisant : les deux modalités doivent se produire

simultanément dans le monde physique pour que les deux soient liées. Ainsi, les modèles

grounded ne traitent pas uniquement la forme, mais sont capables — ou du moins ont la ca-

pacité — de lier cette forme à des référents dans le monde physique, ou à une représentation

de celui-ci.

3.2 Apprentissage automatique

L’apprentissage machine (ML) est un sous-domaine de l’informatique qui s’intéresse à la

création et à “l’étude d’algorithmes informatiques qui s’améliorent automatiquement grâce

à l’expérience” (Mitchell 1997, p. xv). Au lieu de concevoir un algorithme spécifique pour

résoudre une tâche spécifique, le ML cherche à concevoir des algorithmes qui apprennent

comment résoudre une tâche spécifique :

On dit d’un programme informatique qu’il apprend de l’expérience E sur une

certaine classe de tâches T et selon une mesure de performance P, si sa per-

formance à la tâche T, telle que mesurée par P, s’améliore avec l’expérience E.

(Mitchell 1997, p. 3)

L’expérience E consiste en un ensemble d’exemples — appelé ensemble de données — à

partir duquel le programme va apprendre. L’apprentissage se fait par un processus d’essais

et d’erreurs au cours duquel le programme tente de résoudre la tâche T à l’aide des données

disponibles E et modifie ses paramètres de manière à augmenter sa mesure de performance

P.

L’ensemble de données utilisé pour l’apprentissage est généralement divisé en trois en-

sembles inégaux : l’ensemble d’apprentissage qui est le plus important (≈ 80%), l’ensemble

de développement (ou de validation) (≈ 10%), et l’ensemble de test (≈ 10%). L’ensemble

d’entrâınement, comme son nom l’indique, est utilisé pour entrâıner le modèle. L’ensemble

de développement est utilisé pour tester le modèle afin de sélectionner le meilleur point de
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contrôle du modèle, tandis que l’ensemble de test n’est utilisé qu’une fois le meilleur modèle

sélectionné pour rapporter le score final.

3.3 Réseaux neuronaux artificiels

Les réseaux de neurones artificiels (ANN) sont un type d’algorithmes d’apprentissage qui

appartiennent à l’approche connexionniste de l’intelligence artificielle (IA). L’idée centrale

du connexionnisme est qu’un comportement complexe peut être approximé par un calcul

complexe, qui peut à son tour être décomposé en calculs plus petits et plus simples réalisés

par des unités de traitement individuelles. L’interconnexion de ces unités (et donc du calcul)

donne naissance au comportement global.

Ces unités de traitement, appelées à l’origine perceptrons, sont maintenant communé-

ment appelées neurones. Un neurone reçoit n entrées X = x0, x1, ..., xn à partir desquelles

une sortie ŷ est calculée. Étant donné les caractéristiques d’entrée, le neurone est entrâıné

à prédire une sortie ŷ qui doit être aussi proche que possible de la sortie souhaitée y.

Pour ce faire, le vecteur d’entrée est pondéré par un ensemble de poids W = w0, w1, ..., wn

qui sont des paramètres entrâınables, et la sortie est ensuite transformée par une fonction

d’activation non linéaire φ. Un neurone de biais peut également être ajouté. Le calcul final

d’un seul neurone peut donc être résumé comme suit :

ŷ = φ(W · x+ b) = φ(

n∑
i=1

wixi + b) (D.1)

Les problèmes du monde réel sont trop complexes pour être résolus par un seul neurone.

Ainsi, un nombre arbitraire de neurones peut être utilisé en conjonction afin d’apprendre des

fonctions de transformation complexes. Ces neurones sont regroupés en couches et forment

ce que l’on appelle communément un perceptron multicouche (MultiLayer Perceptron, MLP).

La première couche est appelée la couche d’entrée, la dernière couche couche de sortie, et

la ou les couches intermédiaires sont appelées les couches cachées.

3.3.1 Réseaux de neurones récurrents et unités récurrente à portes

Les réseaux neuronaux récurrents (RNN) sont des réseaux neuronaux capables de traiter des

données séquentielles (Elman 1990). Les RNN peuvent être considérés comme des réseaux

feed-forward complétés par des connexions de rétroaction. Les RNN peuvent être formalisés

comme suit :

ht = φ(Wxt + Uht−1 + b) (D.2)

où ht est l’état caché au pas de temps t, xt est l’entrée actuelle, ht−1 est l’état caché pré-

cédent, b est un terme de biais, φ est une fonction d’activation non linéaire (généralement

sigmöıde ou tangente hyperbolique), et où W , U et b sont des paramètres entrâınables.

Notez que la seule différence avec une couche feed-forward est simplement le terme sup-

plémentaire Uht−1 : la sortie à un pas de temps t ne dépend pas seulement de l’entrée

courante mais aussi de la sortie au pas de temps précédent t−1. Ainsi, un tel calcul permet

de modéliser la dépendance temporelle qui existe entre des vecteurs consécutifs. La sortie

d’un RNN consiste en une séquence T de vecteurs. Le vecteur final de la séquence (au pas

de temps T ) peut être considéré comme la représentation compacte de toute la séquence

d’entrée, car le vecteur final dépend du calcul de tous les vecteurs précédents de la séquence.

Lorsque le premier élément de la séquence x1 est traité, ht−1 n’existe pas. Dans ce cas, cet

état caché précédent, noté h0, est défini comme un vecteur de 0, bien que dans certains cas,

l’état initial puisse également être un paramètre entrâınable du réseau.
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Même si les RNN sont capables de modéliser des données séquentielles et de suivre

les dépendances locales relativement bien, ils sont incapables de capturer les dépendances

à long terme dans la séquence d’entrée. En effet, à mesure que la taille de la séquence

T s’allonge, le vecteur ht contient de moins en moins d’informations sur le début de la

séquence. L’information sur le passé s’estompe à mesure que le vecteur caché précédent

ht−1 est combiné à chaque pas de temps avec de nouvelles informations. Les unités à porte

ont été introduites pour résoudre ce problème.

Cho et al. (2014) a introduit les Gated Recurrent Units (GRU) qui sont des cellules

récurrentes à ports (gated) qui sont également capables de garder la trace des dépendances

à long terme et à court terme. Un GRU est formellement défini comme suit :

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ĥt = tanh(Whxt + Uh(rt ∗ ht−1) + bh)

ht = (1− zt) ∗ ht−1 + zt ∗ ĥt

(D.3)

où Wz, Uz,Wr, Ur,Wh, Uh sont des matrices entrâınables, bz, br, bh sont des termes de

biais, et σ représente la fonction d’activation sigmöıde. Un GRU possède deux portes : une

porte de mise à jour z, et une porte de réinitialisation r qui calculent toutes deux indépen-

damment une valeur scalaire à chaque pas de temps t (zt et rt ∈ [0, 1]). Compte tenu de

l’entrée courante xt, la valeur de zt représente un rapport entre la quantité d’informations

à reporter depuis le pas de temps précédent [(1 − zt) ∗ ht−1] et la quantité de nouvelles

informations à intégrer [zt ∗ ĥt]. Cette porte permet de contrôler les dépendances à long

terme. rt représente le degré de dépendance du nouvel état par rapport au pas de temps

précédent [rt ∗ ht−1], ce qui permet de contrôler les dépendances locales.

3.4 Mécanisme d’attention

Même en utilisant des cellules récurrentes bidirectionnelles, l’encodage de la signification

d’une séquence entière dans un seul vecteur reste une tâche difficile. Les mécanismes

d’attention (Bahdanau et al. 2015) ont été introduits pour résoudre ce problème. L’intuition

de tels mécanismes d’attention est simple : au lieu de conserver le dernier vecteur de la sé-

quence — qui devrait encoder le sens de la phrase entière — tous les vecteurs qui ont été

calculés à chaque pas de temps sont conservés et un poids est attribué à chacun d’entre eux

de façon à donner plus d’importance à certains vecteurs qu’à d’autres.

Les poids sont calculés par le réseau lui-même et appris au moment de l’entrâınement.

Ainsi, le réseau apprend quel(s) vecteur(s) de la séquence d’entrée doit(vent) se voir accor-

der plus d’importance dans la représentation finale, et ce de manière non supervisée. Un

mécanisme d’attention peut être formalisé comme suit :

c =

T∑
t=1

αtht avec αt =
exp(score(ht))

T∑
t′=1

exp(score(ht′))

(D.4)

où c, le vecteur de contexte, est la somme pondérée des vecteurs cachés, et αt est le

poids d’attention pour le pas de temps t, où αt ∈ [0, 1] et
T∑

t=1
αt = 1. La formalisation que

nous présentons est très générale : la fonction de notation score (généralement un MLP)

calcule une valeur scalaire pour chaque ht. Cependant, la manière précise dont cette valeur

scalaire est calculée dépend de l’implémentation particulière du mécanisme d’attention et
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peut ne pas être uniquement une fonction de ht. Avec un tel mécanisme d’attention, les

vecteurs pour lesquels le poids de l’attention α est élevé seront fortement représentés dans

le vecteur final c, tandis que les vecteurs auxquels on a attribué une faible valeur scalaire α

seront peu ou pas représentés dans le vecteur final c.

3.4.1 Fonction de coût et rétropropagation

Le but du réseau est de prédire, à partir d’une entrée x, une sortie ŷ qui soit aussi proche

que possible de la sortie désirée y. Le succès de l’opération est mesuré à l’aide d’une fonction

de coût. Pendant l’apprentissage, le réseau est encouragé à minimiser la différence entre la

sortie prédite et la sortie réelle, et la valeur calculée par la fonction de coût servira de base

pour mettre à jour tous les poids du réseau afin d’atteindre son objectif.

L(y, ŷ) = |y − ŷ| (D.5)

Comme la sortie ŷ dépend directement de la sortie du réseau, qui dépend elle-même des

paramètres du réseau θ, il est possible de les modifier afin que la sortie prédite soit plus

proche de la sortie souhaitée. Cette opération se fait par une opération appelée descente de

gradient en utilisant l’algorithme de rétro-propagation du gradient d’erreur (backpropaga-

tion, Rumelhart, Hinton & Williams 1986). Cette opération consiste à calculer la dérivée

de la fonction de coût par rapport aux paramètres du réseau. Intuitivement, cela mesure la

responsabilité d’un poids donné dans l’écart entre la sortie prédite et la sortie attendue :

θt+1 = θt − η
dL(y, ŷ)

dθ
(D.6)

où les poids à θt+1 sont mis à jour par un facteur η qui est appelé le taux d’apprentissage.

Le taux d’apprentissage contrôle la force des mises à jour des poids du réseau. S’il est trop

élevé, le réseau risque de rater la solution optimale, tandis qu’un taux d’apprentissage trop

faible ralentira l’apprentissage et risque en outre de bloquer le réseau dans un optimum

local. On utilise généralement la descente de gradient par lots, où la perte est moyennée

sur un lot (batch) d’exemples, c’est-à-dire sur plusieurs exemples échantillonnés de manière

aléatoire dans l’ensemble d’apprentissage.

3.5 Modèle de parole visuellement contextualisée

3.5.1 Modèle CELL

Le premier modèle de parole visuellement contextualisée (PVC, en anglais Visually Groun-

ded Speech Models ou VGS models) est le modèle CELL (Cross-channel Early Lexical Lear-

ning) développé par Roy & Pentland (2002) et Roy (2003). Ce modèle a été explicitement

développé afin de comprendre comment l’interaction des stimuli visuels et auditifs permet

l’acquisition lexicale. Le but du modèle CELL est d’apprendre des appariements audio-

visuels (appelés prototypes audio-visuels) entre divers objets et leurs formes verbales afin

de constituer un proto-lexique comme le ferait un enfant. Afin d’apprendre des prototypes

audiovisuels, le modèle CELL reçoit en entrée un contexte visuel (image) et son énoncé

apparié. Le modèle CELL recherche des séquences audio récurrentes qui sont stockées

avec l’objet qui était manipulé lorsque la séquence a été extraite. Les paires objet/son

très fréquentes sont conservées puis ensuite filtrées selon un critère d’information mutuelle

afin d’enlever les paires de mauvaise qualité (par exemple les paires objets/déterminant,

objet/pronom, qui sont certes fréquentes mais non discriminantes).
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Les résultats montrent que le modèle CELL est capable d’apprendre des paires audio-

visuelle (AV) sémantiquement valides (par exemple, chaussure, clef, chien, toutou) et in-

dique une précision sémantique de 85% des paires découvertes. Certains des éléments AV

contiennent également des“mots”non standard — qui ne sont pas comptés comme des paires

sémantiquement exactes — tels que des sons onomatopéiques (par exemple aboiement, bruit

de moteur), bien que de telles paires soit exactes d’un point de vue de l’acquisition du lan-

gage, le vocabulaire des enfants étant aussi constitué d’onomatopées.

Ce modèle a cependant fait plusieurs hypothèses simplificatrices, notamment le fait que

la parole est perçue de manière catégorielle en termes de phonèmes et les images devaient

être prétraitées de manière à détacher d’abord l’arrière-plan du premier plan, puis à isoler

l’objet de l’image. En outre, l’entrée visuelle était délibérément simplifiée de manière à

ne contenir qu’un seul objet, ce qui facilitait la tâche du modèle. Cependant, le modèle

CELL constitue l’un des tout premier modèle computationnel d’acquisition du langage en

contexte, et est le précurseur des modèles neuronaux actuels.

3.5.2 Modèles neuronaux

Les réseaux neuronaux ont permis aux chercheurs de modéliser des interactions encore plus

complexes entre les modalités visuelles et orales. Gabriel et al. (2014) a introduit, à notre

connaissance, le premier modèle PVC neuronal (basé sur un CNN), dans lequel le modèle

est entrâıné à faire correspondre des images à des mots parlés isolés. Leur modèle comporte

deux branches, une branche acoustique et une branche visuelle qui vectorise respective-

ment le mot d’entrée et l’image. Le modèle est entrâıné à minimiser la distance cosinus

entre les vecteurs correspondants, tout en augmentant cette distance pour les vecteurs non

correspondants (approche contrastive). Leur modèle est ensuite évalué sur une tâche de

recherche image/parole : retrouver l’image correspondante à partir d’un mot en entrée, ou

vice-versa. Leurs résultats indiquent que leur réseau est effectivement capable de capturer

les liens intermodaux et d’apprendre efficacement à associer un mot parlé à son contexte

visuel. Leur modèle a ouvert la voie à des modèles traitant des stimuli acoustiques plus

complexes, tels que des légendes complètes au lieu de mots isolés et a posé les bases de

l’ensemble des modèles neuronaux utilisés aujourd’hui, par l’utilisation d’une fonction de

coût contrastive notamment.

Harwath & Glass (2015), s’appuyant sur les travaux de Gabriel et al. (2014), ont pro-

posé le premier modèle capable de gérer des légendes complètes au lieu de mots isolés.

Leur modèle peut être considéré comme une version améliorée du modèle CELL car il fait

également quelques hypothèses simplificatrices (les légendes sont segmentées en mots et les

images pré-traitées afin d’en extraire les objets). L’objectif du réseau est d’aligner chaque

mot de la légende audio sur chaque bôıte de délimitation de l’image. Harwath et al. (2016)

ont amélioré leurs travaux précédents de sorte que leur modèle puisse utiliser des légendes

complètes au lieu de légendes pré-segmentées. De plus, au lieu d’exécuter un détecteur

d’objets sur l’image, ils utilisent simplement l’avant-dernière activation d’un réseau VGG

pré-entrâıné. Finalement, Harwath, Recasens, Suŕıs, Chuang, Torralba & Glass (2018)

changent complètement leur modèle afin d’avoir un modèle entièrement convolutif : au lieu

d’utiliser des vecteurs VGG, ils utilisent le réseau VGG complet jusqu’à la dernière couche

convolutive (c’est-à-dire en supprimant les couches entièrement connectées), et utilisent des

convolutions 1D pour la légende d’entrée. Afin de joindre les résultats des deux branches,

ils utilisent un produit scalaire entre la matrice représentant l’image et celle représentant le

signal de parole. Le fait de conserver les feature maps des convolutions des deux branches

leur permet ainsi de détecter les zones de saillance entre l’image convoluée et l’entrée parlée

convoluée avec un niveau de précision très fin. Leur modèle est en mesure de mettre en
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évidence des régions spécifiques du spectrogramme qui correspondent à des régions spéci-

fiques de l’image, ce qui leur permet de construire des paires image/audio de manière non

supervisée.

Dans leur travail, Harwath et collègues sont donc passés de la recherche de paires audio-

visuelles à partir d’images pré-segmentées et de légendes pré-segmentées à la recherche

de paires audio-visuelles à un fin niveau de granularité sans aucune supervision à partir

de parole brute appariée à des images brutes. Globalement, leur travail montre qu’il est

possible d’extraire des unités de type mot à partir de la parole brute en utilisant des images

comme une forme de supervision faible. Plus important encore, alors que leur réseau a été

entrâıné à minimiser la distance entre une image et sa légende correspondante à une échelle

globale, le réseau a déduit des similarités à une échelle locale. Par conséquent, l’acquisition

lexicale semble être un sous-produit de la tâche principale, et apparâıt “naturellement”

dans le modèle.

Contrairement aux CNN, les RNN sont conçus pour traiter des séquences telles que

la parole. Même si les CNN sont également capables de traiter des séquences, les RNN sont

plus plausibles d’un point de vue cognitif. En effet, comme nous l’avons déjà mentionné, la

sortie à un temps donné dépend des prédictions des pas de temps précédents, ce qui n’est

pas le cas pour les CNNs.

Le premier modèle PVC à base de RNN que nous connaissons est celui de Chrupa la et al.

(2017a). L’architecture utilisée est très similaire à celle des travaux précédemment cités et

comporte deux branches : une branche audio et une branche visuelle ; et utilise le même type

de fonction de coût que Harwath & Glass (2015). De même que Harwath et al. (2016), ils

utilisent des vecteurs VGG pour représenter l’image. Néanmoins, contrairement à Harwath

et al. (2016), l’encodeur acoustique est constitué de Recurrent Highway Networks (RHN,

Zilly et al. 2017) empilés au lieu de couches convolutives. L’intégration finale de la branche

audio est calculée par un mécanisme d’attention (voir section 3.4) qui apprend à pondérer

les vecteurs d’entrée, de manière à donner plus de poids à des parties spécifiques du signal

vocal. Ils évaluent leur modèle sur une tâche de recherche d’images vocales, c’est-à-dire qu’à

partir d’une légende parlée, le réseau doit retrouver l’image correspondante. Ils obtiennent

de meilleurs résultats que Harwath & Glass (2015), montrant que les modèles basés sur les

RNN sont également capables de mettre en correspondance les deux modalités de manière

adéquate.

Plus récemment, Merkx et al. (2019) se sont basés sur l’architecture de Chrupa la et al.

(2017a), en ajoutant un mécanisme d’attention à chaque couche (implémenté comme dans

Chrupa la et al. 2017a), et en utilisant des cellules récurrentes bidirectionnelles au lieu

de cellules unidirectionnelles. Leur modèle a atteint des niveaux de performance encore

plus élevés que Chrupa la et al. (2017a) et Harwath & Glass (2015) sur le même jeu de

données. Plusieurs optimisations ont également été faites, comme l’utilisation du taux

d’apprentissage cyclique (cyclic learning rate, Smith 2017) qui consiste à avoir un taux

d’apprentissage qui augmente et diminue plusieurs fois entre une borne supérieure et une

borne inférieure, au lieu d’avoir un taux d’apprentissage strictement décroissant comme

ce qui est fait habituellement. Cela permet au modèle de sortir des minima locaux dans

lesquels il pourrait être bloqué et de converger vers une solution globalement meilleure.

Cependant, ces meilleurs résultats se font au détriment de la plausibilité cognitive. En

effet, comme ce modèle utilise des cellules bidirectionnelles, il traite l’entrée parlée des deux

côtés en même temps, ce qui n’est bien sûr pas possible pour les humains.

Ainsi, les modèles basés sur les RNN sont donc capables d’apprendre la correspondance

parole/image de manière aussi fiable que les modèles basés sur les CNN. Ils semblent éga-

lement être des modèles assez flexibles, car ils sont capables d’apprendre rapidement la
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correspondance entre de nouvelles paires objet/nom comme le montre les travaux de Krish-

namohan et al. (2020). Le fait que ces modèles utilisent des cellules RNN au lieu de CNN

les rend également plus plausibles sur le plan cognitif, et constituent donc des bancs d’essai

idéaux pour simuler l’acquisition lexicale.

3.5.3 Analyse des représentations

Chrupa la et al. (2017a) ont essayé de comprendre les représentations apprises par leur

modèle. Ils ont constaté que toutes les couches ne sont pas également informatives sur

la présence d’un mot. En particulier, ils ont constaté que les couches inférieures de leur

architecture étaient les moins informatives, tandis que l’avant-dernière était la plus fiable.

Cela suggère que les unités ressemblant à des mots sont progressivement construites au fur

et à mesure que l’information circule dans le réseau, et qu’une certaine quantité de calcul

est nécessaire pour que l’information apparaisse. Une observation similaire a été faite plus

récemment par Merkx et al. (2019). Leur étude révèle également que les couches inférieures

de leur architecture encodent la forme (c’est à dire, des informations phonétique) tandis que

les couches supérieures encodent la sémantique. Alishahi et al. (2017) explorent dans quelle

mesure un tel modèle PVC encode la phonologie. Leur étude montre que les encodages du

réseau regroupent approximativement les phonèmes de l’anglais par classe de sons (plosives,

fricatives, affricées, etc.). Cependant, le regroupement n’est pas parfait et semble se faire

sur la base de facteurs acoustiques (formants) plutôt que sur des facteurs linguistiques plus

profonds.

Harwath et collègues ont également effectué une analyse des représentations apprises par

leur modèle. Les travaux de Harwath et al. (2016) suggèrent que leur réseau effectue une

segmentation implicite de l’entrée audio en sous-unités. Drexler & Glass (2017) a montré

que certains neurones étaient spécifiquement activés par certaines séquences de phonèmes.

De façon intéressante, et de façon similaire à l’observation de Chrupa la et al. (2017a) et

Alishahi et al. (2017), leur étude révèle que les couches inférieures du réseau encode des

représentations liées plus à la forme qu’à la sémantique.

3.5.4 Jeux de données

Étant donné que le nombre d’ensembles de données librement disponibles qui comportent à

la fois des images et des descriptions parlées est limité, la plupart des modèles mentionnés

ci-dessus sont entrâınés sur des extensions d’ensembles de données initialement conçus pour

entrâıner des modèles qui génèrent des descriptions textuelles d’image. Les principaux

ensembles de données utilisés pour cette tâche sont Flickr8k (Rashtchian et al. 2010,

Hodosh et al. 2013) et MSCOCO (Lin et al. 2014) qui présentent des images associées

à 5 légendes descriptives écrites par des humains. Ces ensembles de données présentent

naturellement un langage contextualisé, car chaque légende descriptive est associée à une

image, ce qui constitue, dans une certaine mesure, une connaissance du monde physique.

Comme les légendes ont été écrites par des annotateurs après avoir vu l’image, l’image

reflète naturellement l’intention communicative exprimée dans les légendes.

Cependant, ces données sont artificielles, dans le sens où elles ne reflètent pas véritable-

ment ce à quoi un enfant est confronté. De récents résultats, utilisant des jeux de données

réalistes (voir Tsutsui et al. 2020 et Räsänen & Khorrami 2019) montrent que leur modèle

respectif peine à apprendre. Cela souligne la nécessité de disposer de jeux de données plus

réalistes si l’on veut utiliser des simulations informatiques pour comprendre l’acquisition du

langage chez l’enfant, comme le préconise Dupoux (2018).
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3.5.5 Simulation ou modélisation de l’acquisition du langage ?

La plupart des modèles susmentionnés s’inspirent de l’acquisition du langage chez l’enfant,

ou du moins établissent un lien explicite entre le but ultime de leur modèle et l’acquisition

du langage chez l’enfant. Il semble raisonnable de se demander dans quelle mesure ces

modèles modélisent l’acquisition du langage chez les enfants ou simulent l’acquisition du

langage chez les enfants.

La différence entre simulation et modélisation ne concerne que les deux premiers niveaux

de la hiérarchie de Marr, à savoir le niveau computationnel , et le niveau algorithmique ;

le premier s’intéressant au problème à résoudre et à l’objet du calcul, tandis que le second

s’intéresse à la manière dont le calcul est mené et définit chaque étape du calcul précisément.

Rieder (2003, p. 818) fait une différence entre simulation et modélisation. Pour lui, la

“simulation traduit l’action d’imiter la réalité et [le] modèle représentant le véhicule”. La

simulation est donc “l’action de présenter l’apparence, ou d’interagir avec le comportement,

d’un système sans la réalité”, tandis que la modélisation serait “la génération d’un fac-similé

ou d’une représentation du système réel”, ce dernier pouvant être “physique, mathématique,

procédural [c’est-à-dire algorithmique], ou une combinaison de ces éléments”.

Nous pensons que si l’on souhaite modéliser l’acquisition du langage chez l’enfant, le

modèle doit être aussi proche que possible de ce que font les humains sur le plan algorith-

mique, et par exemple incorporer les mêmes priors que les humains, ce qui n’est le cas

d’aucun des modèles PVC susmentionnés. Par conséquent, même s’ils simulent dans une

certaine mesure l’acquisition du langage chez l’enfant, et plus particulièrement l’acquisition

lexicale, ils ne modélisent pas l’acquisition du langage chez l’enfant. Néanmoins, le fait de

ne pas implémenter le même “véhicule” que les humains n’empêche pas ces implémentations

d’afficher des résultats similaires dans la simulation finale, ce qui rend leur implémentation

et leur étude intéressantes pour tester des hypothèses.

3.5.6 Simulation parfaite et grounding

Selon Dupoux (2018) (et d’autres), une approche réussie pour étudier l’acquisition du lan-

gage chez l’enfant à l’aide d’approches computationnelles devrait satisfaire aux contraintes

suivantes :

construire des systèmes informatiques évolutifs capables, lorsqu’ils sont alimen-

tés par des données d’entrée réalistes, d’imiter l’acquisition du langage telle

qu’elle est observée chez les enfants.Il faut (Dupoux 2018)

Si l’on veut imiter l’acquisition du langage telle qu’elle est observée chez les nourrissons

— ce qui serait ce que nous définissons comme une simulation parfaite — les modèles

susmentionnés ne sont pas entièrement adaptés. En effet, ces modèles n’intègrent que les

capacités perceptives et non les capacités productives d’un enfant. Ainsi, pour Roy (2005)

le modèle idéal devrait être à la fois capable de perception et de production afin d’imiter

réellement l’acquisition du langage chez l’enfant et ayant des boucles de rétroactions. Aucun

des modèles que nous avons présentés ne met en œuvre toutes les boucles de rétroaction

nécessaires pour obtenir un modèle totalement grounded au sens de Roy (2005). Cependant,

bien qu’ils n’intègrent pas tous les aspects de l’acquisition du langage chez l’enfant, ils en

intègrent un sous-ensemble, à savoir l’acquisition lexicale. Ce processus implique en effet de

construire des schémas sur le monde (c’est-à-dire des représentations neuronales) en utilisant

une entrée linguistique (c’est-à-dire des sous-titres audio) et une entrée non linguistique

(c’est-à-dire un contexte visuel sous forme d’images fixes). Ainsi, ces modèles se prêtent à

la simulation de l’acquisition lexicale chez l’enfant.
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3.6 Conclusion

Des recherches antérieures montrent que les modèles PVC, qu’ils soient basés sur des CNN

ou des RNN, sont capables d’apprendre avec succès comment apparier un stimulus acous-

tique à un stimulus visuel. Ces travaux révèlent également qu’en dépit du fait qu’ils n’ont été

entrâınés qu’à minimiser la distance entre une image et sa description orale afin d’apparier

les deux modalités avec précision, ces modèles ont développé des capacités linguistiques plus

profondes. Il s’agit d’une propriété intéressante, car ces capacités linguistiques apparaissent

comme un sous-produit de la tâche principale. Cela ressemble en quelque sorte à la façon

dont les enfants acquièrent leur langue maternelle.

Alors que ces capacités ont été largement explorées pour les modèles basés sur les CNN,

elles ne l’ont pas été pour les modèles basés sur les RNN. Nous cherchons donc dans cette

thèse à mieux comprendre quelles capacités linguistiques les modèles PVC à base de RNN

sont capables de développer. Plus précisément, nous cherchons à répondre aux questions

suivantes :

• Les modèles basés sur les RNN mettent-ils en évidence des parties spécifiques de

l’entrée parlée qui sont particulièrement pertinentes pour prédire l’image cible, comme

cela a été montré pour les modèles basés sur les CNN ? (Harwath & Glass 2017)

• Si oui, quelles parties spécifiques de l’entrée sont mises en évidence ?

• S’ils mettent effectivement en évidence des parties spécifiques de l’entrée, cette capa-

cité est-elle valable d’une langue à l’autre, même si le modèle est entrâıné avec une

langue typologiquement différente de l’anglais, par exemple le japonais ?

• Dans quelle mesure ces capacités linguistiques se développent-elles avec le temps ? Les

modèles PVC sont-ils capables d’acquérir rapidement certaines capacités linguistiques

(c’est-à-dire avec une quantité de données relativement faible) ou non ?

• Des recherches antérieures (Chrupa la et al. 2017a ; Merkx et al. 2019) montrent que

les représentations internes d’un tel réseau encodent la présence des mots individuels

des légendes parlées. Cela soulève la question de savoir si ce comportement est valable

pour tous les mots d’une légende donnée, ou seulement pour des mots spécifiques ?

• Si la présence de mots individuels est encodée dans les représentations internes du

réseau, cela signifie que le réseau a appris ce qui constitue un mot et a stocké cette

information dans ses poids. Cela soulève la question de savoir comment le réseau

reconnâıt (c’est-à-dire active) la représentation d’un mot donné sur la base d’une

entrée acoustique.

• Les modèles PVC sont entrâınés avec des légendes complètes non segmentées et ob-

tiennent des résultats corrects. Cependant, leurs homologues textuels (c’est-à-dire

les réseaux entrâınés sur des légendes écrites) obtiennent de meilleurs résultats. Cela

soulève plusieurs questions, la principale étant : si les réseaux PVC étaient présentés

avec des légendes segmentées, obtiendraient-ils de meilleurs résultats ?
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4 Modèles de parole visuellement contextualisée et jeux de

données

Les enfants acquièrent leur langue maternelle en contexte. Ainsi, l’accès à des stimuli

uniquement oraux n’est pas suffisant pour qu’ils acquièrent leur langue maternelle. En

effet, il est nécessaire que ces stimuli soient contextualisés (grounded) afin que les enfants

puissent faire sens de ce qui est dit autour d’eux. Le contexte leur permet ainsi d’apparier

des signes linguistiques (paire signifié/signifiant) à leurs référents. Les modèles neuronaux

de parole visuellement contextualisée permettent de modéliser les interactions complexes

qui ont lieu entre la modalité visuelle et la modalité auditive. Ainsi, ces modèles peuvent

être utilisés afin de simuler l’acquisition du langage chez l’enfant. Ce chapitre présente donc

les modèles qui seront utilisés pour les expériences décrites dans cette thèse ainsi que les

données nécessaires à l’entrâınement de ceux-ci.

4.1 Données

Les jeux de données que nous utilisons dans cette thèse sont des jeux de données initialement

conçus pour une tâche de description textuelle d’images (image captioning). Ces corpus

contiennent un ensemble d’images, chacune décrite par 5 descriptions textuelles écrites par

des humains. Ces jeux de données sont le corpus MSCOCO (Lin et al. 2014), STAIR

Yoshikawa et al. (2017) et Flickr8k (Rashtchian et al. 2010, Hodosh et al. 2013). Nous

utilisons des extensions des jeux de données originaux, qui en plus d’avoir une description

textuelle de chacune des images, incluent une version parlée de ces mêmes descriptions.

L’extension audio de MSCOCO et de STAIR inclut une description audio générée par un

système de synthèse vocale, tandis que l’extension audio de Flickr8k n’utilise pas de voix

de synthèse mais des voix naturelles.

COCO L’extension audio de MSCOCO (Synthetically Spoken COCO Chrupa la et al.

2017b que nous appellerons désormais COCO) que nous utilisons a été créée par Chrupa la

et al. (2017a). Celle-ci a été générée en utilisant le système de synthèse vocale de Google

et ne comprend qu’une seule voix de synthèse. Ainsi, le jeu de données COCO comprend

616 435 descriptions audio pour un total de 123 287 images. Nous avons conservé le parti-

tionnement original de données, à savoir 566 435 paires audio/image pour l’entrâınement,

25 000 pour la validation et 25 000 pour le test.

STAIR L’extension audio de STAIR (Synthetically Spoken STAIR Havard et al. 2019b

que nous appellerons désormais STAIR) est une extension que nous avons nous-mêmes

créée pendant notre thèse. Le jeu de données original STAIR utilise les mêmes images

que MSCOCO, mais contient, au lieu de descriptions textuelles en anglais, des descriptions

textuelles en japonais. Il est important de préciser que les descriptions en japonais sont des

descriptions originales et non des traductions des descriptions anglaises. Nous avons suivi

la même méthodologie que Chrupa la et al. (2017a) et avons généré des signaux acoustiques

pour chacune des descriptions japonaises en utilisant le système de synthèse vocale de

Google. Nous avons conservé le même partitionnement de données que Chrupa la et al.

(2017a) et Karpathy & Li (2017).

FLICKR8k Enfin, le dernier jeu de données est Flickr8k (Harwath & Glass 2015) qui

contient de la parole naturelle : les descriptions ont été enregistrées par plus de 180 locuteurs.

Ce corpus est le plus petit et ne contient que 8 000 images pour 40 000 descriptions.

Les descriptions orales sont des verbatims des descriptions écrites, qui ont simplement été

lues par des locuteurs natifs de l’anglais sur Amazon Mechanical Turk. 30 000 paires

images/audio sont utilisées pour l’entrâınement, 5 000 pour la validation et enfin 5000 pour

le test.
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Métadonnées Nous avons procédé à un alignement forcé des signaux de parole avec

le texte pour chacun des trois corpus afin d’avoir des informations de frontières précises

pour chacun des mots des descriptions. Cet alignement a été fait au moyen de l’outil en

ligne Maus Forced Aligner (Kisler et al. 2017). De plus, nous avons également procédé

à une annotation en partie du discours. Pour les corpus en anglais, cette annotation a

été faite en utilisant TreeTagger (Schmid 1997), et pour le japonais, celle-ci a été faite en

utilisant KyTea. Puisque l’annotation faite par KyTea (Neubig et al. 2011) était plus proche

d’une annotation morphologique que morphosyntaxique, nous avons pris le parti d’éditer les

annotations en fusionnant notamment certaines étiquettes entre elles (morphèmes “TAIL”

et “SUF” notamment). Afin d’avoir des étiquettes comparables entre anglais et français,

nous avons porté les étiquettes de chacun des deux étiqueteurs vers leur équivalent Universal

POS (Petrov et al. 2012).

4.2 Architecture

L’architecture que nous utilisons est basée sur celle de Chrupa la et al. (2017a) et est

construite au moyen de la librairie Python Theano (James Bergstra et al. 2010). Comme

toutes les architectures neuronales de parole visuellement contextualisée, cette architecture

à deux parties principales, un encodeur d’image et un encodeur de parole. Cette architecture

est entrâınée pour réaliser une tâche de recherche d’image à partir d’une description audio.

Ainsi, lorsqu’une description orale d’une image est donnée en entrée, le réseau retrouve

l’image qui correspond à la description. Pour ce faire, le réseau projette l’image et le signal

de parole dans un espace de représentation commun, de sorte que l’image et sa description

correspondante soient proches dans l’espace de représentation alors qu’une image et une

description ne formant pas une paire (la description correspond à la description d’une autre

image) soit éloignées dans l’espace de représentation.

Encodeurs L’encodeur d’image consiste en une simple couche linéaire, chargée de ré-

duire la dimension du vecteur d’image d’entrée. Ainsi, le vecteur VGG (Simonyan & Zis-

serman 2015) représentant l’image, extrait à partir d’un réseau de vision par ordinateur,

se voit réduit pour avoir la même dimension que le vecteur représentant le signal acous-

tique. Concernant l’encodeur de parole, celui-ci prend en entrée des vecteurs MFCC qui

sont ensuite passés à une couche convolutionnelle 1D. Cette couche convolutionnelle est

suivie par 5 couches récurrentes composées de GRU (Gated Recurrent Units, Cho et al.

2014). Contrairement à l’implémentation de base qui utilise des cellules RHN (Zilly et al.

2017), nous avons fait le choix d’utiliser des GRU car ceux-ci sont mieux documentés dans

la littérature. Nous utilisons deux mécanismes d’attention, l’un produisant un vecteur à

partir des vecteurs de la première couche récurrente, et un second produisant un vecteur

à partir des vecteurs de la cinquième couche récurrente. Le vecteur final de l’encodeur de

parole correspond au produit terme à terme de chacun des deux vecteurs d’attention. Pour

finir, le vecteur de parole et le vecteur d’image sont normalisés à la norme L2.

Fonction de coût La fonction de coût que nous utilisons est la fonction de coût contrastive

(contrastive loss, également appelée hinge loss ou triplet loss Weinberger & Saul 2009):

L(u, i, α) =
∑
u,i

(∑
u′

max[0, α+ d(~u,~i)− d(~u′,~i)] +
∑
i′

max[0, α+ d(~u,~i)− d(~u, ~i′)]

)
(D.7)

où ~u est un vecteur représentant l’énoncé,~i un vecteur représentant l’image, ~u′ et ~i′ sont

des énoncés (respectivement des images) ne formant pas une paire avec l’image i (respective-

ment l’énoncé u). Cette fonction de coût encourage le réseau à minimiser la distance d(~u,~i)

entre l’image ~i et l’énoncé ~u appartenant à des paires image/énoncé concordantes pour
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que celle-ci soit inférieure à une marge α, tout en augmentant la distance pour les paires

image/énoncé non concordantes afin qu’elles soient éloignées d’une distance au moins égale

à α dans l’espace de représentation. Le coût est calculé au niveau du batch, c’est-à-dire que

toutes les images à l’intérieur d’un batch (à l’exception de l’image i) sont considérées comme

des exemples d’inadéquation contrastive pour l’énoncé u, tandis que tous les autres énoncés

(à l’exception de l’image u) à l’intérieur du même batch servent d’exemple d’inadéquation

contrastive pour l’image i. Dans notre cas, la distance d utilisée est la distance cosinus.

Attention L’un des éléments clef de notre modèle est son mécanisme d’attention. On

rappelle au lecteur que l’attention se calcule ainsi :

c =

T∑
t=1

αtht (D.8)

où T est la longueur de la séquence, ht est l’état caché produit par une cellule récurrente

au moment t, et αt est un paramètre qui est appris. Rappelons que le mécanisme d’attention

apprend à attribuer un poids αt à chaque vecteur d’entrée. Plus le poids est élevé, plus le

vecteur a de l’importance dans la représentation finale. Dans notre cas, des poids d’attention

élevés sur des vecteurs spécifiques signifient que le réseau a accordé plus d’attention à des

parties spécifiques du signal d’entrée. Comme mentionné précédemment, nous utilisons deux

modèles d’attentions, l’un après la première couche récurrente, l’autre après la cinquième

couche récurrente, le vecteur final étant calculé ainsi :

c =

(
T∑

t=1

αGRU1
t hGRU1

t

)
·

(
T∑

t=1

αGRU5
t hGRU5

t

)
(D.9)

où T est la longueur totale de la séquence, hGRU1
t et hGRU5

t représentent respectivement

le vecteur caché calculé au moment t par la 1e et la 5e couche récurrente, et αGRU1
t et αGRU5

t

sont les poids d’attention calculés respectivement par le mécanisme d’attention suivant la

1e et la 5e couche récurrente. Le vecteur final est normalisé à la norme unitaire `2.

Présupposés et Biais Nous pouvons classer les hypothèses et biais que nous faisons

implicitement en trois catégories : hypothèses sur la nature des données, hypothèses sur la

tâche, et enfin hypothèses la nature des opérations computationnelles.

De par la nature même des images d’entrée, le contexte visuel fourni au modèle sera

nécessairement limité. En effet, nous ne percevons pas en tant qu’humain des images

fixes, mais des séquences d’images. De même, les images des corpus ont été soigneusement

sélectionnées afin de mettre en avant des objets particuliers, et ainsi ne reflètent que peu

le contexte visuel qu’un enfant pourrait percevoir, et notamment ne sont pas appropriées

pour dépeindre des actions. Aussi, les descriptions liées aux images traduisent cela, et

ne décrivent que peu les éventuelles actions qui ont lieu dans les images. De plus, en

choisissant de telles données, nous faisons implicitement l’hypothèse que l’enfant entendrait

systématiquement une description de son environnement. Cela est évidemment loin d’être

le cas. Il arrive en effet très souvent que l’on évoque des personnes ou des objets qui ne

sont pas physiquement présents.

Nous faisons également des hypothèses la tâche. En effet, le réseau est entrâıné à

résoudre une tâche très spécifique : retrouver une image à partir d’une description orale.

Cela est une tache peu réaliste et ne correspond pas à ce que font des humains qui apprennent

leur langue maternelle. Cependant, cette tâche met en jeu une capacité similaire à celle des

humains, à savoir apprendre à faire un appariement entre un percept visuel et un percept

acoustique. De plus, les humains ne se limitent pas à une seule modalité, mais utilisent de

nombreuses autres modalités (odorat, toucher, proprioception, etc.), rendant ainsi la tâche

que fait le réseau très spécifique et peu réaliste.
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Enfin, nous faisons de nombreuses hypothèses sur la nature des opérations faites. Notre

réseau traite les images et les signaux de paroles de manière indépendante, et ainsi la

perception visuelle n’influe pas sur la perception auditive. Ce n’est pas le cas chez l’humain

qui traite conjointement les deux modalités et où la perception d’une modalité peut influer

sur la manière dont est perçue l’autre. Ainsi, il n’y a au sein de notre réseau pas de véritable

interaction entre les deux modalités.

Ainsi, de par la nature des données que nous utilisons, de la tâche pour laquelle est

entrâıné le réseau et de la nature des opérations faites, les comparaisons que nous ferons avec

l’acquisition du langage chez l’humain ne pourront être que limitées. Aussi, les conclusions

que nous tirerons doivent être comprises à la lumière des hypothèses et des limites présentées

: si la vision — sous la forme d’images fixes — devait être la seule modalité utilisée pour

donner un sens à la parole environnante, et si la parole environnante se référait toujours au

contexte visuel, quelles régularités devrions-nous attendre des enfants ?
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5 Attention dans un modèle de parole visuellement contex-

tualisée

L’hypothèse principale de cette thèse est que, afin d’apprendre une correspondance fiable

entre une image et sa description orale, le modèle devrait implicitement apprendre à segmen-

ter l’entrée orale en sous-unités. Comme les images utilisées représentent principalement

des objets et non des actions, nous supposons que le modèle devrait apprendre implicite-

ment à segmenter des unités nominales. Ainsi, nous étudions les mécanismes d’attention

de nos modèles et analysons quelles parties du signal d’entrée sont mises en évidence, pour

voir si effectivement le modèle met en avant des unités lexicales nominales.

5.1 Attention et méthodologie

Jain & Wallace (2019) affirment dans leur article “Attention is not Explanation” que les

poids d’attention ne fournissent pas une explication significative des prédictions d’un réseau

neuronal. Ils montrent notamment qu’il est possible de trouver des distributions alternatives

des poids d’attention tout en conservant les prédictions intactes et arrivent à la conclusion

que les poids d’attention ne constituent pas une source d’information fiable pour comprendre

les prédictions d’un réseau neuronal. Wiegreffe & Pinter (2019) dans leur document de

réponse “Attention is not not explication” atténuent toutefois la déclaration initiale de

Jain & Wallace (2019) : pour eux les “scores d’attention sont utilisés comme fournissant

une explication ; pas l ’explication”. Ils affirment qu’il est légitime de considérer les poids

d’attention comme une forme d’explication étant donné qu’il est peu facile de trouver une

distribution alternative qui conserve la prédiction du réseau intact ou qui ne crée pas de

chute de performance trop importante.

Afin de nous assurer que l’attention de notre modèle explique en partie les prédictions,

et pour mesurer objectivement son importance, nous allons mélanger de façon aléatoire

les poids d’attention des deux mécanismes d’attention. Si les scores obtenus avec les poids

mélangés sont moins bons que ceux obtenus avec les poids originaux, nous pourrons conclure

que les poids d’attention originaux sont utiles pour la prédiction des modèles.

5.2 Mesure de l’attention

Dans ce chapitre, nous étudions les parties de l’entrée parlée auxquelles le modèle prête

attention en analysant les poids d’attention. Nos analyses se concentrent sur les points

suivants :

• Quels parties du discours (POS) sont mises en évidence ;

• Quels mots sont mis en évidence ;

• Quelles parties d’un mot donné sont plus spécifiquement mises en évidence ;

• Comment la distribution des poids d’attention évolue-t-elle dans le temps.

Après avoir entrâıné les modèles sur l’ensemble de données anglais ou japonais, nous

encodons chaque légende de l’ensemble de test et extrayons les poids d’attention α pour

les deux mécanismes d’attention. Nous utilisons ensuite un algorithme de détection de pics

pour détecter les maxima locaux dans les poids d’attention. Nous dirons que l’attention

se focalise sur ou met en évidence une unité spécifique (POS, mot, etc.) s’il existe un

maximum local parmi les poids d’attention attribués aux vecteurs qui composent cette

unité. Pour des raisons de brièveté, à partir de maintenant, les poids d’attention calculés

par le mécanisme d’attention suivant la première couche et la cinquième couche de GRU

seront appelés respectivement “GRU1” et “GRU5”.
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Afin de comprendre si les unités mises en évidence sont différentes de ce que le hasard

pourrait prédire, nous utilisons des pics aléatoires comme base de référence. Pour chaque

légende, nous échantillonnons des pics aléatoires et calculons la distribution des mots et

des POS sous ces pics aléatoires et regardons dans quelle mesure celle-ci est différente du

hasard.

5.3 Résultat sur les corpus synthétiques

5.3.1 Résultats de référence

Afin de nous assurer que nos résultats ne sont pas dus au hasard, nous avons entrâıné cinq

modèles, chacun avec une graine différente. Les résultats présentés dans le tableau 4.1

sont une moyenne (± écart-type) des résultats obtenus pour les cinq modèles. Les modèles

sont évalués en termes de rappel@k (R@k) sur une tâche de recherche d’images à partir

d’une requête vocale. Pour chaque requête vocale, les images sont classées de l’image

la plus proche à l’image la moins proche. Le R@k évalue si l’image cible (c’est-à-dire

l’image réellement appariée avec la légende de la requête) est classée parmi les k premières

images. Nous indiquons également le rang médian r̃ qui nous informe sur le rang moyen des

images réelles. Nos résultats (Table 4.1) révèlent que le réseau est parvenu à apprendre un

appariement correct dans les deux langues. Cependant, nos résultats en anglais sont moins

bons que ceux de Chrupa la et al. (2017a) (R@1 de 5.5 contre 11.1) ce qui s’explique par le

changement des cellules RHN par des GRU. Cependant, nos résultats sont bien meilleurs

que le hasard (R@1 de 0.02).

5.3.2 Attention aléatoire

Pour vérifier la pertinence des poids d’attention nous avons soit mélangé les poids des

deux mécanismes d’attention en même temps, soit mélangé alternativement l’un des deux

afin d’estimer la contribution de chacun dans la prédiction finale. Nous l’avons fait sur

le meilleur modèle entrâıné (sélectionné sur l’ensemble de validation) de chacun des cinq

entrâınements pour COCO et STAIR (voir Table 4.2).

Lorsque les poids d’attention des deux mécanismes d’attention sont mélangés, nous

observons que le R@1 est à peine supérieur à 0%, ce qui montre que le réseau est à peine

capable de trouver l’image correcte à partir d’une requête orale. Lorsque nous mélangeons

les poids d’attention de GRU1 mais laissons ceux de GRU5 intacts, nous remarquons que

le réseau obtient de meilleurs résultats que lorsque nous faisons l’inverse. Dans les deux

cas, les résultats sont moins bons que lorsque nous laissons les poids d’attention des deux

mécanismes d’attention intacts (voir Tableau 4.1), mais meilleurs que lorsque les deux sont

mélangés. Cela montre que les poids d’attention de GRU5 sont plus importants que ceux

de GRU1, car le remaniement des poids du premier a un impact négatif beaucoup plus

important que le remaniement des poids du second.

Ainsi, ces expériences nous permettent de conclure que les deux mécanismes d’attention

mettent en évidence des unités utiles pour les prédictions des réseaux et que, par conséquent,

l’analyse des poids d’attention est une entreprise légitime.

5.3.3 Parties du discours (POS) et mots

Pour COCO (Figure 4.2), nous observons que GRU5 se concentre fortement sur les noms

(85.89%±0.38 des pics) et à peine sur les autres POS, et ce d’une façon très différente de ce

que le hasard prédirait (47.15%± 0.09). Le comportement de GRU1 est différent et semble

beaucoup plus proche d’un comportement aléatoire : 52.37% ± 29.46 des pics sont situés
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au-dessus des noms alors que l’aléatoire prédirait 46.92%±0.15. Cependant, ce résultat est

dû à un entrâınement fautif (d’où l’écart-type important) où l’attention était concentrée à

la fin des légendes.

Pour STAIR (Figure 4.3), les deux mécanismes d’attention ont appris à se concentrer sur

les noms : 71.33%±5.94 pour GRU1 (Figure 4.3a) et 63.30%±2.76 pour GRU5 (Figure 4.3b)

alors que le hasard prédirait 45%. Nous remarquons que GRU5 se concentre principalement

sur les particules 28.63% ± 2.15 alors que l’aléatoire prédirait 15.88% ± 0.07 (en japonais,

les particules sont des clitiques qui indiquent notamment la fonction du mot précédent dans

la phrase. Par exemple, “は” /wa/ marque le topique, et “が” /ga/ marque le sujet), tandis

que GRU1 se concentre principalement sur les noms.

L’étude des POS mis en évidence par les mécanismes d’attention des modèles anglais et

japonais révèle que les modèles ont adopté un comportement spécifique en fonction de la

langue des légendes. En anglais, les noms sont les POS les plus mis en avant car ils font

référence aux objets présents dans l’image. En japonais, cependant, les modèles ont tiré

parti du fonctionnement de la langue en ne mettant pas seulement en évidence les noms,

mais en adoptant un comportement spécifique à la langue lors de la mise en évidence des

particules.

Pour COCO (Tableaux B.1 et B.2), les mots les plus mis en évidence sont des noms

faisant référence à des objets concrets dans les images (train, tennis, toilettes, baseball,

etc.). Pour STAIR (Tableaux B.3 et B.4), on remarque que sur les 10 premiers mots mis en

évidence, respectivement 3 et 4 des mots pour GRU1 et GRU5 sont des particules. (“ga”

(marqueur sujet), “no” (marqueur génitif) et “o” (marqueur objet) et aussi “ni” (marqueur

locatif) pour GRU5) les autres mots étant des noms. La stratégie du réseau de mettre

en évidence les particules est très intéressante car, en raison de la nature unidirectionnelle

des unités récurrentes utilisées ; et parce que les particules sont des mots suffixés, les

vecteurs qui constituent une particule contiennent beaucoup d’informations concernant le

mot précédent. Par conséquent, la mise en évidence des particules est la stratégie optimale.

5.3.4 Position des pics

Nous analysons spécifiquement où les pics d’attention sont situés au-dessus des mots. Pour

ce faire, nous avons divisé chaque mot situé sous un pic en quatre parties égales et nous

comptons le pourcentage de pics situés au-dessus d’une partie donnée. Les résultats sont

présentés dans le tableau 4.3.

Pour les modèles entrâınés sur l’anglais, les pics d’attention ne sont pas situés précisé-

ment à la fin d’un mot, mais sont plutôt situés entre le milieu et la fin des mots mis en

évidence. Cela semble indiquer que le réseau ne se concentre pas sur la représentation du

mot entier, mais plutôt sur les vecteurs représentant la première moitié ou les deux tiers

d’un mot. Pour le japonais, nous observons un comportement similaire puisque les pics de

GRU1 et GRU5 sont globalement situés au-dessus des fins de mots. Cependant, la distri-

bution des pics a tendance à être plus uniforme. Nous expliquons cela par le fait que les

pics d’attention sur les légendes japonaises sont situés au tout début de la particule ou à

la frontière avec le mot précédent (voir les deux pics de la figure 4.1b situés au début des

particules “ni” et “ga”). Ainsi, la distribution des pics d’attention au-dessus d’une partie

donnée du mot tend à être plus uniforme.

5.3.5 Étude longitudinale

Nous avons régulièrement sauvegardé les modèles pendant l’entrâınement afin d’avoir une

vision longitudinale de la façon dont l’apprentissage se déroule et avons donc sauvegardé
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les poids des modèles chaque fois que le coût diminuait de 4% de sa valeur initiale. Nous

avons sauvegardé également le modèle à chaque époque.

Nous remarquons d’abord que pour COCO (4.4a) et STAIR (4.4b), le nombre d’étapes

de sauvegarde appartenant à la première époque représente une grande partie du graphique,

ce qui montre que le coût a chuté assez rapidement et que la phase d’apprentissage la plus

importante est en fait concentrée dans la première époque. Pour COCO, nous remarquons

une évolution claire dans la proportion de pics mettant en évidence des noms où les pics

au-dessus des noms sont passés de 37,4% à 55,9% après seulement 8 batches (256 exemples).

Cela montre qu’il est possible pour le réseau de se concentrer sur des parties très spécifiques

de l’entrée parlée avec très peu d’exemples. À la fin de la première époque, la proportion

de pics au-dessus des noms n’évolue pas beaucoup et reste stable, oscillant autour de 85%.

Pour STAIR, nous remarquons que dans les premières étapes de la première époque, il y

a une compétition entre les POS, l’attention mettant en évidence simultanément les noms,

les verbes et les particules. Puis à la fin de la première epoch, le nombre de pics mettant

en évidence les particules dépasse celui des verbes, pour ne plus mettre en avant que des

noms ou des particules à la fin de l’apprentissage. Contrairement à COCO, où l’attention

n’évolue plus après la première epoch, on constate pour STAIR que l’attention et les unités

sur lesquelles elle se focalise évolue tout au long de l’entrâınement.

5.4 Résultat sur le corpus de parole naturelle FLICKR8k

5.4.1 Résultats de référence et attention aléatoire

Comme observé précédemment pour l’ensemble de données COCO, nos résultats sont in-

férieurs à ceux rapportés par Chrupa la et al. (2017a) qui rapportent un R@1 de 5,5 alors

que le nôtre n’est que de 2,08. Les résultats que nous obtenons sont également moins bons

que ceux obtenus sur les ensembles de données COCO et STAIR. Néanmoins, même si les

résultats ne sont pas particulièrement bons, ils sont toujours bien meilleurs que le hasard,

ce qui montre que le réseau a été capable de donner un sens aux données et a appris une

correspondance parole-image fiable.

Comme pour les expériences précédentes, nous avons mélangé les poids d’attention afin

de comprendre s’ils étaient significatifs ou non. Les résultats sont présentés dans le ta-

bleau 4.5. Ici aussi, nous remarquons qu’en mélangeant aléatoirement les poids d’attention

des deux mécanismes d’attention, nous obtenons un R@1 beaucoup plus faible que le R@1

original (−1.54pp). Une fois encore, cela montre que l’attention joue un rôle essentiel pour

les modèles. Cependant, contrairement aux modèles COCO et STAIR, la majorité des pré-

dictions des modèles reposent sur le vecteur contextuel calculé par le premier mécanisme

d’attention plutôt que sur celui du cinquième.

5.4.2 Parties du discours (POS) et mots

Comme pour COCO, nous remarquons que les modèles ont appris à se concentrer principa-

lement sur les noms. Les deux mécanismes d’attention mettent en évidence plus de noms

que ce que le hasard aurait prédit (qui serait 37%), ce qui démontre également que le réseau

se concentre délibérément sur les noms plutôt que sur tout autre POS. Cependant, dans

ce cas et contrairement à COCO et STAIR, GRU1 a mis en évidence plus de noms dans

l’ensemble (72, 58%± 4, 94) que GRU5 (58, 73%± 5, 30).

En examinant de plus près les mots spécifiquement mis en évidence par chaque méca-

nisme d’attention du meilleur modèle (présentés dans l’annexe B), nous remarquons que les

10 premiers mots mis en évidence par GRU1 sont uniquement des noms faisant référence à

des objets présents dans les images (chien, homme, fille, garçon, chiens, personnes, femme,
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enfant, balle, eau). Les 10 premiers mots de GRU5 contiennent également des noms, mais

aussi des silences, des prépositions et des déterminants (</s>, eau, <sil>, plage, neige,

herbe, chemise, rue, a, in). GRU5 semble donc moins spécialisé que GRU1.

5.4.3 Position des pics et étude longitudinale

Dans cette expérience également, nous avons analysé au-dessus de quelles parties de mots

les pics d’attention sont spécifiquement situés (Tableau 4.6). Nous observons que les pics

ont également tendance à favoriser les fins de mots. Comme pour COCO et STAIR, les

pics ne sont pas situés à la toute fin des mots mis en évidence, mais semblent être plus

concentrés au milieu, puisque les plus fortes proportions de pics se trouvent au milieu du

début et de la fin des mots. Une fois de plus, ces résultats tendent à montrer que le modèle

n’a pas besoin d’avoir accès au mot complet pour le reconnâıtre et le mettre en évidence

correctement.

La figure 4.6 montre comment la proportion de POS mis en évidence évolue dans le

temps. Nous nous concentrerons sur GRU1 car c’est le mécanisme d’attention le plus

interprétable du modèle. Comme pour COCO et STAIR, on constate que le modèle se

focalise vite sur les noms et ce avec peu d’exemples (400 exemples suffisent). On constate

que la proportion de pics au-dessus des noms augmente ensuite régulièrement au cours de la

première époque. Cependant, contrairement à COCO et STAIR où la proportion n’a pas

beaucoup évolué après la première époque, nous remarquons ici que la proportion de pics

au-dessus des noms évolue encore après la première époque. Cela confirme que le modèle a

besoin de plus de temps afin d’identifier précisément tous les mots importants de la légende.

Cela s’explique par le fait que Flickr8k est composé de parole naturelle. Ainsi, le modèle

a besoin de plus de temps pour prendre en compte les variations intra- et inter-locuteurs.

5.5 Acquisition du langage

Le fait que nos modèles mettent préférentiellement en avant les noms semble cohérent

avec ce qui est observé dans la littérature sur l’acquisition du langage. Ce phénomène est

communément appelé le “noun bias”. En effet, il a été constaté que le lexique des enfants —

tant en perception qu’en production — contient une plus grande proportion de noms que

de verbes ou de tout autre POS. Gentner (1982) a été la première à postuler que les noms

sont plus faciles à apprendre que les verbes. Elle explique cela par le fait que “les mots

qui se réfèrent à des concepts sont faciles à apprendre parce que l’enfant a déjà formé des

concepts d’objet, et n’a besoin que de faire correspondre les mots et les concepts”. Notre

réseau neuronal est dans ce cas puisqu’il utilise des vecteurs VGG pré-entrâınés qui codent

les objets présents dans l’image.

Nous avons montré que notre modèle japonais développe un comportement spécifique à

la langue lorsqu’il se concentre principalement sur les particules “ga”. Haryu & Kajikawa

(2016) ont observé que les enfants japonais (à partir de 15 mois) font également usage

de la particule “ga” pour segmenter le discours. Nos modèles ont donc adopté la même

stratégie que les enfants japonais pour segmenter le nom adjacent. Haryu & Kajikawa

(2016) affirment qu’“il est clair que les particules liées au nom ne sont pas les premiers indices

que les enfants utilisent pour la segmentation des mots”. Nous observons effectivement ce

type de schéma pour nos modèles où les particules sont à peine utilisées dans les premières

étapes d’apprentissage, mais deviennent de plus en plus mises en avant, alors que les noms

sont moins présents qu’au début.
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5.6 Conclusion

Dans ce chapitre, nous avons entrâıné des modèles PVC sur deux langues (anglais et ja-

ponais) et nous avons analysé le comportement de leurs mécanismes d’attention. Notre

analyse a révélé que l’attention a adopté un comportement général par lequel elle apprend

à détecter et à mettre en évidence des noms spécifiques dans l’entrée parlée. Nos expé-

riences confirment ainsi l’intuition de Chrupa la et al. (2017a) selon laquelle “le mécanisme

d’attention du modèle de parole lui permet de sélectionner des fragments clefs des [...] énon-

cés”. Nous avons également montré que l’attention pouvait aussi adopter un comportement

spécifique à la langue que le réseau traite en mettant par exemple en avant les particules

du japonais. Finalement, nous avons montré que la focalisation de l’attention sur les noms

est un comportement appris, et qui apparâıt avec relativement peu d’exemples.
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6 Activation, compétition et reconnaissance lexicale

Dans le chapitre précédent, nous avons montré que les modèles PVC étaient capables de

mettre en évidence des mots spécifiques dans le flux de la parole en utilisant leurs méca-

nismes d’attention. Ceci implique que le modèle est capable de reconnâıtre les mots qui sont

mis en évidence. Cette aptitude soulève quelques questions auxquelles nous allons tenter

de répondre dans le présent chapitre.

6.1 Reconnaissance de mots

Le fait que les modèles PVC soient capables de reconnâıtre des mots individuels a déjà été

exploré par plusieurs études. Par exemple, Chrupa la et al. (2017a) et plus récemment Merkx

et al. (2019) ont montré que les embeddings d’énoncés calculés par les modèles PVC basés

sur les RNN contiennent des informations sur la présence des mots de l’énoncé d’entrée.

Cependant, ces études n’ont pas montré pour quel type de mots ce comportement est vrai

et si le modèle a appris à associer ces mots individuels à leurs référents visuels. De plus,

aucune de ces études n’a exploré les facteurs qui influencent la reconnaissance des mots et

pourquoi certains mots semblent être assez bien reconnus alors que d’autres ne le sont pas

du tout. C’est ce que nous cherchons à faire ici.

6.1.1 Appariement de mots isolés

Afin de déterminer si le modèle est capable d’associer des mots isolés à leurs référents vi-

suels, nous avons sélectionné un ensemble de 80 mots qui correspondent aux noms de 80

catégories d’objets dans l’ensemble de données MSCOCO. Nous nous attendons à ce que

notre modèle soit très efficace avec ces mots spécifiques, car ils font référence aux princi-

paux objets présentés dans l’ensemble de données MSCOCO. Nous évaluons la capacité du

modèle à classer les images de manière à ce qu’au moins une image parmi les 10 premières

contienne l’instance de l’objet correspondant au mot cible présenté (Précision@10, abrégé

P@10). Il est important de rappeler qu’au moment de l’entrâınement, le réseau n’a reçu

que des légendes complètes et non des mots isolés. Par conséquent, si le réseau est ca-

pable de retrouver des images contenant des occurrences du mot cible, cela montre qu’une

segmentation implicite a été effectuée au moment de l’entrâınement.

Les résultats sont présentés dans la figure 5.1. 40 mots sur les 80 mots cibles ont une

P@10≥ 0.8. Cela montre que le réseau est capable d’associer de manière fiable des mots

isolés à leurs référents visuels, même s’il ne les a jamais vus isolément. À l’inverse, on

remarque également que 15 mots ne sont pas mis en correspondance avec leurs référents

visuels. Parmi les mots les mieux reconnus, on trouve des animaux (éléphant, zèbre, mouton,

girafe) et des objets (camion, bus, bateau, avion) qui sont très fréquents dans notre jeu de

données. Parmi les mots les moins bien reconnus, on trouve des objets (fourchette, couteau,

vase, grille-pain) ou des animaux (souris) qui sont assez rarement mentionnés dans les

légendes car ils peuvent être trop petits et non décrits par les annotateurs.

6.1.2 Facteurs influençant l’appariement

Nous explorons 2 types de facteurs : les facteurs liés à l’image et les facteurs liés à la parole.

Pour ces derniers, nous considérons la fréquence des mots dans l’ensemble d’entrâınement

et la longueur du signal vocal. En ce qui concerne les facteurs liés à l’image, nous consi-

dérons la fréquence des instances d’objets dans les images de l’ensemble d’entrâınement, le

nombre moyen d’instances d’objets voisins et la surface moyenne de chaque objet. Pour

modéliser la relation entre toutes ces variables, nous avons ajusté un modèle de régression
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linéaire multiple avec R où nous essayons de prédire la Précision@10 en utilisant les facteurs

mentionnés précédemment.

Les résultats sont présentés dans le Tableau 5.1. Nous remarquons que le seul effet

qui joue un rôle significatif dans la reconnaissance des mots est la fréquence du mot dans

l’ensemble d’entrâınement : plus le mot est fréquent dans l’ensemble d’entrâınement, mieux

il est reconnu. La longueur du mot a un léger effet positif qui tend à montrer que les

mots longs sont mieux reconnus que les mots courts. La fréquence des objets et le nombre

d’objets voisins n’ont aucun effet. La taille des objets semble également avoir un léger effet.

Nos résultats montrent donc que les mots individuels sont effectivement mis en corres-

pondance de manière fiable avec leur référent visuel par le réseau. Le principal facteur de

réussite dans cette tâche est la fréquence des mots cibles dans la légende ainsi que la taille

des objets dans l’image. Ainsi, les mots qui sont très fréquents et qui font référence à des

objets de grande taille sont mieux reconnus que les autres.

6.2 Activation lexicale

6.2.1 Paradigme du gating

Le paradigme de gating a été introduit par Grosjean (1980) et implique la procédure sui-

vante :

Le paradigme du gating implique la présentation répétée d’un stimulus oral

(dans ce cas, un mot) de telle sorte que sa durée depuis l’apparition est aug-

mentée à chaque présentation successive. On procède ainsi jusqu’à ce que le

mot entier ait été présenté. Après chaque présentation (ou gate), on demande

aux sujets de noter le mot présenté et d’évaluer leur confiance dans chaque

supposition. (Cotton & Grosjean 1984)

Dans notre cas, cela signifie que le modèle neuronal est alimenté par des versions tron-

quées d’un mot cible donné, chaque version tronquée comprenant une plus grande partie

du mot cible. Dans notre cas, la troncation se fait soit de gauche à droite (le modèle n’a

accès qu’à la fin du mot), soit de droite à gauche (le modèle n’a accès qu’au début du mot).

Nous évaluons la capacité des modèles à classer les images de façon à ce que les k premières

images contiennent des instances de l’objet cible (nous utilisons la Précision@10, P@10). Le

but de cette expérience est de tester si le début du mot joue un rôle dans la reconnaissance

des mots pour le réseau ou non. Si c’est le cas, nous nous attendons à ce que le réseau ne

parvienne pas à récupérer les images du mot cible si le mot est tronqué de gauche à droite,

mais pas — ou moins — lorsque le mot est tronqué de droite à gauche, ce qui motive la

troncature des deux côtés.

6.2.2 Effets du gating

La figure 5.2a montre l’évolution moyenne de la P@10 sur les 80 mots de test. Comme on

peut le voir sur le graphique, la précision évolue différemment selon la partie du mot qui a

été tronquée. Lorsque les mots cibles sont tronqués de gauche à droite, la précision chute

plus rapidement que lorsqu’ils sont tronqués de droite à gauche. Ces résultats montrent

que le modèle est robuste à la troncation lorsqu’elle est effectuée de droite à gauche mais

pas lorsqu’elle est effectuée de gauche à droite : lorsque les phonèmes initiaux des mots

sont supprimés, le réseau ne parvient pas à retrouver l’image cible, mais lorsqu’on ne lui

présente que les phonèmes initiaux, le réseau est globalement capable de retrouver des

images correspondant au mot cible.
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6.2.3 Activation abrupte ou graduelle ?

Nos expériences révèlent que de petites différences acoustiques produisent de grandes diffé-

rences dans la représentation finale. Il semble que certains vecteurs MFCC jouent un rôle

plus important que d’autres dans l’activation de la représentation finale.

Nous laissons progressivement le réseau voir de plus en plus de vecteurs MFCC compo-

sant un mot donné, en lui donnant itérativement des segments de vecteurs MFCC de plus

en plus longs en commençant par le début du mot jusqu’à ce que le réseau ait eu accès au

mot complet. Nous calculons ensuite la similarité cosinus entre l’embedding calculé pour

chacune des versions tronquées du mot et l’embedding correspondant au mot complet. Plus

la similarité cosinus est proche de 1, plus les deux représentations sont similaires. Si chaque

vecteur MFCC contribue de manière égale à la représentation finale du mot, la similarité

cosinus évoluera linéairement sinon la similarité cosinus évoluera par “sauts” plutôt que

linéairement. Pour détecter les étapes qui pourraient se produire dans l’évolution de la

similarité cosinus, nous approximons sa dérivée en calculant la différence de premier ordre.

Les “sauts” élevées devraient ainsi se traduire par des pics (par exemple, figure 5.4b). Nous

calculons l’évolution de la similarité cosinus pour les 80 mots cibles codés avec le meilleur

modèle entrâıné.

En moyenne, il y a 1,25 pic par mot pour le modèle entrâıné contre 0,1 pic par mot pour

notre condition de base, montrant que l’évolution du cosinus est linéaire dans le second,

mais pas dans le premier. Par conséquent, dans notre modèle entrâıné, certains vecteurs

MFCC sont plus déterminants pour la représentation finale que d’autres. En effet, certains

vecteurs MFCC déclenchent un “saut” élevé dans l’évolution du cosinus, ce qui suggère que

l’embedding se rapproche soudainement de sa valeur finale.

6.3 Compétition lexicale

Certains modèles psycholinguistiques (voir section 1.4) supposent que le premier phonème

d’un mot active tous les mots commençant par le même phonème. Le mot que le locuteur

veut prononcer et qu’il prononce progressivement est appelé le mot “cible”. Les mots qui

sont activés mais qui ne correspondent pas au mot cible sont appelés “concurrents”. Lorsque

l’auditeur perçoit de plus en plus le mot cible, certains concurrents sont désactivés. Cela

signifie qu’ils ne sont plus considérés comme le mot potentiel, car ils ne correspondent pas

à ce qui est perçu.

6.3.1 Méthodologie

Nous avons sélectionné 12 paires de mots commençant par la même séquence de phonèmes

et avons testé si elles étaient activées par un processus de compétition.1

Pour chaque paire de mots, nous avons sélectionné un des mots que nous considérons

comme le mot cible, en laissant progressivement le réseau voir de plus en plus de vecteurs

MFCC composant ce mot. À chaque pas de temps, le réseau produit un vecteur, que

nous utilisons pour classer les images de l’image la plus proche à l’image la moins proche.

Ensuite, pour les 50 images les plus proches, nous vérifions si au moins une des légendes

contient soit le mot cible, soit le concurrent.

Comme le concurrent et le mot cible commencent par les mêmes phonèmes, nous nous

attendons à ce que le réseau produise un vecteur qui active à la fois le concurrent et le mot

cible au début, puis, lorsque le signal acoustique ne correspond plus au concurrent, nous

1wii/window, cat/cattle, cat/cow, cat/catcher, cattle/catcher, floor/flower, fridge/frisbee, kid/kitchen,
player/plate, tree/train, meat/meter, and train/truck.
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nous attendons à ce que le réseau soit capable d’activer uniquement le mot cible. Pour

chaque paire de mots, chaque mot est utilisé alternativement comme mot cible.

6.3.2 Résultats

Trois résultats sont présentés pour 3 paires de mots : “Train/Truck” (5.6) pour laquelle une

forte compétition existe, “Cat/Cattle” (5.5) pour laquelle une compétition modérée existe,

et “Frigde/Frisbee” (5.7) pour laquelle aucun phénomène de compétition n’a pu être mis

en évidence. Les modèles de la cohorte (Marslen-Wilson & Welsh 1978, Marslen-Wilson

1987b) et trace (McClelland & Elman 1986b) affirment tout deux que les mots concurrents

sont tous activés en même temps, c’est-à-dire lorsque le premier phonème est perçu. Même si

certains exemples sont conformes à cette affirmation — comme celui présenté dans la figure

5.6b — ce n’est pas le cas de toutes les paires de mots. Dans certains cas, la compétition est

minime car la représentation des deux mots est activée de manière séquentielle (comme dans

la figure 5.5) et dans d’autres cas, il n’y a absolument aucune compétition entre les deux

mots (comme dans la figure 5.7) bien que les deux mots commencent de manière similaire.

Par conséquent, le comportement du réseau semble très peu clair. Il semble toutefois que

le réseau active le mot qui est le plus courant. Par exemple, il y a beaucoup plus de photos

de trains que de photos où les camions constituent l’objet principal de l’image. Ainsi, le

réseau semble activer préférentiellement la représentation de l’objet qui est le plus fréquent

dans les images et les légendes.

6.4 Conclusion

Dans ce chapitre, nous avons montré qu’un modèle PVC est capable de faire correspondre

des mots individuels à leurs référents visuels bien qu’il ait été entrâıné sur des légendes

complètes. van Zon (1997, p. 8) note que dans les modèles COHORT et TRACE “la

segmentation est le résultat de la reconnaissance”. Nous pensons que la reconnaissance de

mots individuels montre que le modèle a implicitement segmenté ses entrées en sous-unités,

et proposons la formulation inverse :“la reconnaissance est la preuve de la segmentation”. Un

point important que nous avons souligné dans ce chapitre est cependant que la segmentation

résultante peut ne pas toujours correspondre à des mots graphiques.

Dans ce chapitre, nous avons introduit plusieurs méthodologies pour analyser comment

la représentation des mots individuels se construit au cours du temps. Notamment, nous

avons adapté le paradigme de gating de Grosjean (1980) afin d’analyser comment les mots

sont activés par le réseau. Nous avons observé que la représentation des mots n’est pas

construite linéairement par le réseau et que la reconnaissance peut se produire avec une

entrée partielle, corroborant ainsi que “la reconnaissance se produit souvent avant la fin du

mot” (van Zon 1997, p. 8). Nous avons montré que pour pouvoir activer la représentation

correcte d’un mot donné, le réseau doit avoir accès aux premiers phonèmes de ce mot, car

lorsqu’ils sont supprimés, le réseau est incapable d’activer la représentation correcte. Ainsi,

lorsque la reconnaissance de mots est observée avec une entrée partielle, c’est uniquement

lorsque l’entrée partielle englobe la première partie du mot, mais pas lorsqu’elle n’englobe

que la partie finale du mot.

Finalement, nous avons cherché à étudier la compétition lexicale sans avoir pu parvenir

à mettre en avant une systématicité de ce phénomène dans notre réseau.
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7 Impact de l’introduction d’information linguistiques

Dans les chapitres précédents, nous avons montré que les modèles de parole visuellement

contextualisée basés sur des RNN utilisent leur mécanisme d’attention pour mettre en évi-

dence les mots qui sont pertinents pour retrouver l’image correcte, et que ces modèles

segmentent implicitement l’entrée parlée en sous-unités. Dans ce chapitre, au lieu de com-

prendre quels types d’unités ont été implicitement segmentés par le réseau, nous abordons

le problème dans l’autre sens et nous posons la question suivante : quelle segmentation

maximise la performance (rappel@k) d’un modèle PVC si la parole devait être segmentée ?

Afin de répondre à cette question, nous explorons comment l’information de frontière peut

être intégrée, quel type de frontière est le plus efficace (soit le phone, la syllabe ou le mot),

et enfin où – c’est-à-dire, à quelle couche – une telle frontière devrait être introduite dans

le réseau. Enfin, nous explorons également des modèles hiérarchiques pour lesquels nous

fournissons plusieurs niveaux de segmentation en même temps afin de comprendre l’effet de

la modélisation explicite de la nature hiérarchique de la parole.

7.1 Information de frontières

7.1.1 Types de frontières

Comme indiqué précédemment, nous souhaitons donner des informations linguistiques à

notre réseau, et plus particulièrement des informations sur les frontières des segments.

Dans ce chapitre, nous définissons un segment comme étant soit un phone, soit une syllabe,

soit un mot. Les frontières des segments ont été dérivées des métadonnées de l’alignement

forcé (voir § 3.2.4) afin de savoir quel vecteur MFCC constitue une frontière ou non.

Nous considérons deux types différents de syllabes dans ce travail : en effet, lorsque nous

parlons, les mots ne sont pas prononcés les uns après les autres de manière déconnectée, mais

sont plutôt connectés par un processus appelé “resyllabification”. En anglais, ce phénomène

est visible lorsqu’un mot se terminant par une consonne est suivi d’un mot commençant

par une voyelle. Dans ce cas, la consonne finale du premier mot tend à s’en détacher et à se

rattacher au mot suivant, franchissant ainsi la frontière du mot. Les deux types de syllabes

que nous considérons dans ce travail sont les suivants : “syllabe-mot” qui fait référence aux

syllabes qui résultent d’une segmentation qui ne prend pas en compte la resyllabification,

et “syllabe-connectée” qui fait référence aux syllabes qui résultent d’une segmentation qui

prend en compte la resyllabification.

Ainsi, pour chaque légende, nous avons une séquence X de longueur T de vecteurs

acoustiques de dimension d : X =
[
xd1, x

d
2, ...., x

d
T

]
; et une séquence correspondante de

scalaires B de longueur T représentant les frontières B = [b1, b2, ..., bT ], bt ∈ {0, 1}, où

bt , 1 si xt est une limite de segment, 0 sinon.

7.1.2 Intégrer des frontières de segments

Afin d’intégrer des informations de frontière dans notre réseau, nous tirons parti de sa

conception, et plus particulièrement des cellules récurrentes et de la manière dont ces cellules

calculent leur sortie, qui peut être formalisée comme suit :

ht = f (ht−1, xt ; θ) (D.10)

où l’état caché au temps t, noté ht, est une fonction f du vecteur précédent ht−1 et du

vecteur d’entrée actuel xt, et où θ est un ensemble de paramètres entrâınables de la fonction

f .
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Notre approche pour intégrer l’information de frontière dans les couches récurrentes de

notre réseau peut être formalisée comme suit :

ht =


f (h0, xt ; θ) , if bt−1 = 1

Nf (ht−1, xt ; θ) , otherwise

(D.11)

Dans notre approche, ht ne dépend du vecteur précédent ht−1 que si le vecteur précédent

n’est pas un vecteur acoustique correspondant à la frontière d’un segment (bt−1 6= 0). Si

le pas de temps précédent correspond à la frontière d’un segment (bt−1 = 1), nous réini-

tialisons l’état caché pour qu’il soit égal à h0. Ainsi, les vecteurs d’un même segment sont

temporellement dépendants, mais les vecteurs appartenant à deux segments différents ne le

sont pas. Les GRU qui utilisent ce schéma de calcul seront dorénavant appelés GRUPACK.,

car les vecteurs appartenant au même segment sont “regroupés” (packed) ensemble.

7.1.3 Condition ALL et KEEP

À partir de cette configuration initiale de GRUPACK., nous en avons proposé deux ver-

sions différentes : all et keep. Dans la version all (voir Figure 6.1b), tous les vecteurs

appartenant à un segment sont transmis à la couche suivante. Dans la version keep, seul

le dernier vecteur de chaque segment est transmis à la couche suivante (voir Figure 6.1c).

La longueur de la séquence de sortie et d’entrée reste la même dans la condition all mais

dans la condition keep, la longueur de la séquence de sortie est plus courte que la séquence

d’entrée.

7.2 Méthodologie

Afin de comprendre où les informations de frontière doivent être introduites (c’est-à-dire à

quel niveau de l’architecture), nous entrâınons autant de modèles que le nombre de couches

récurrentes, où chaque fois une couche de GRU est remplacée par une couche GRUPACK..

Par exemple, “GRUPACK.–3 ” fait référence à un modèle où la troisième couche de GRU

est une couche GRUPACK. et les autres couches (1e,2e,4e, et 5e) sont des couches de GRU

classiques.

Afin de comprendre si l’introduction d’informations sur les frontières aide le réseau

dans sa tâche, nous comparons les performances des modèles utilisant des informations

sur les frontières avec un modèle de base qui n’en utilise aucune (ainsi, toutes les couches

récurrentes de l’architecture de base sont des couches de GRU normaux). Ce modèle sera

dorénavant appelé baseline. Nous introduisons également une autre condition, où, au lieu

d’entrâıner des modèles avec des limites de segment réelles (que l’on appellera désormais

true), nous entrâınons des modèles avec des limites aléatoires (que l’on appellera désormais

random). Les frontières aléatoires ont été générées en mélangeant simplement la position

des frontières réelles, ce qui donne autant de frontières positionnées aléatoirement que de

frontières réelles.

Les modèles sont évalués en termes de Rappel@k (R@k). Pour une requête orale, le R@k

évalue la capacité des modèles à classer l’image jumelée cible parmi les k meilleures images.

Afin d’évaluer si les résultats observés dans nos différentes conditions expérimentales (true-

all, true-keep, random-all, random-keep) sont différents les uns des autres et de la

condition baseline, nous avons utilisé un Z-test de proportion binomiale. Ce test est utilisé

pour évaluer s’il existe une différence statistique entre deux proportions indépendantes.

Dans notre cas, la proportion que nous testons est le nombre de succès sur le nombre
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d’essais (qui correspond au nombre de paires légende/image différentes dans l’ensemble de

test).

7.3 Résultats

Dans l’ensemble, nos paramètres expérimentaux ont conduit à l’entrâınement de 81 modèles

différents par ensemble de données. Les résultats de base sont présentés dans le tableau 6.1.

Les résultats pour les conditions true/random obtenus sur les jeux de données COCO

et Flickr8k sont présentés dans le Tableau 6.2 et 6.3 respectivement. Nous obtenons des

résultats plus faibles sur Flickr8k que sur COCO, ce qui montre la difficulté de la tâche

sur la parole naturelle.

Dans l’ensemble, les modèles entrâınés sur Flickr8k avec les frontières true ont un

R@1 significativement meilleur que leurs homologues de base et les modèles entrâınés avec

les frontières random, ce qui indique que les modèles ont utilisé efficacement l’information

sur les frontières. Pour COCO, nous observons que certains modèles entrâınés avec des

frontières aléatoires ont des scores significativement meilleurs que baseline (en particulier

lors de l’utilisation de frontières de phone dans la condition keep), cependant cet effet

disparâıt lors de l’utilisation d’unités plus grandes, telles que des mots.

Il existe un effet d’interaction entre l’utilisation de frontières true et random, que ce

soit dans la condition all ou keep. En effet, dans la condition random-all, aucun résultat

n’est statistiquement meilleur que baseline, alors que dans la condition random-keep, les

résultats sont statistiquement moins bons que baseline. Par conséquent, l’utilisation de

frontières aléatoires qui ne délimitent pas d’unités linguistiques significatives nuit réellement

aux performances du réseau. Cependant, dans la condition true-keep, les résultats sont

meilleurs que baseline. Par conséquent, la condition keep contraint le réseau à apprendre

de meilleures représentations, alors que dans la condition all, les informations sur les

frontières sont diluées par les vecteurs voisins, ce qui conduit à une utilisation sous-optimale

de ces informations.

Dans nos expériences, nous avons utilisé quatre types différents de segments corres-

pondant à deux types différents d’unités linguistiques : les phones, les syllabes-connectées,

les syllabes-mots et les mots. Nous nous attendons à ce que les segments de type mot

(ou les segments qui préservent les frontières du mot et qui portent une quantité substan-

tielle d’informations sémantiques) obtiennent de meilleurs résultats. Les unités de mots

obtiennent en effet des résultats statistiquement meilleurs que baseline pour Flickr8k

et COCO (R@1 = 5.4, +1.1pp et R@1 = 11.3, +2.3pp respectivement). Les syllabes-

mots apportent également une amélioration significative (R@1 = 5.3 pour Flickr8k et

R@1 = 10.9 pour COCO), toutefois légèrement inférieure à celle obtenue avec les unités

de mots.

Nos résultats montrent clairement que l’introduction d’informations sur les frontières à

différentes couches a un impact substantiel sur les résultats : l’utilisation de ces informations

à la première ou à la cinquième couche est inutile, car nous remarquons qu’elle donne des

résultats similaires à ceux de baseline (GRUPACK.–1) ou qu’elle détériore les résultats quel

que soit le type de frontière utilisé (GRUPACK.–5), alors que les résultats sont meilleurs

lorsque ces informations sont introduites dans les couches intermédiaires.

7.4 Informations hiérarchiques

Dans les expériences susmentionnées, nous fournissons au réseau un seul type de frontière

(soit phone, syllabe ou mot) mais pas plusieurs en même temps, comme si plusieurs unités

ne pouvaient pas coexister en même temps. Pourtant, de multiples unités parlées existent
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en même temps, et elles sont structurées de manière hiérarchique : les mots peuvent être

décomposés en syllabes, qui peuvent à leur tour être décomposées en phones. Afin de

modéliser cette nature hiérarchique de la parole, nous pouvons empiler autant de GRUPACK.

que nous le souhaitons, où une couche gère un type de segment (par exemple, les phones) et

la couche suivante du GRUPACK. gère un autre type de segment, qui est hiérarchiquement

au-dessus du précédent (par exemple, des mots, voir Figure 6.2).

Nous explorons l’effet de l’utilisation d’une architecture hiérarchique sur l’ensemble de

données Flickr8k. Contrairement à nos expériences précédentes, nous ne considérons que

les architectures hiérarchiques qui utilisent des couches GRUPACK.–keep. Nous testons

plusieurs architectures qui gèrent différents types de frontières simultanément dont deux

des cinq couches récurrentes sont des couches GRUPACK., puis dans l’expérience suivante,

dont trois des cinq couches sont GRUPACK.. Dans les deux cas, nous testons toutes les

positions possibles ainsi que le type de frontière pour comprendre quelle est la meilleure

combinaison.

7.5 2 couches GRU Packager

7.5.1 Phones et mots

En utilisant les phones et les mots ensemble, les résultats (Tableau 6.4) sont supérieurs à

ceux de l’architecture de base et à ceux de l’architecture GRUPACK. à couche unique. En

effet, nous obtenons un R@1 maximal de 8.2% lorsque nous utilisons GRUPACK. au niveau

des couches 2 et 3, ce qui représente +3.9pp par rapport à l’architecture de base et +2.8pp

par rapport à une architecture monocouche. Nous remarquons également que l’utilisation

d’une architecture hiérarchique nous permet d’entrâıner des réseaux moins profonds tout

en améliorant les résultats par rapport à notre architecture de base.

7.5.2 Phones et syllabes

Les résultats que nous obtenons en utilisant des phones et des syllabes sont présentés dans

le tableau 6.6. Ici aussi, nous remarquons que les résultats sont meilleurs que ceux de la

baseline (sans aucun GRUPACK.) et également meilleurs que lorsque nous utilisons un seul

GRUPACK. : R@1 = 7.9, +2.5pp. Contrairement à l’expérience précédente, l’architecture

à 4 couches converge mieux que l’architecture à 5 couches. Néanmoins, les résultats sont

inférieurs à ceux obtenus en utilisant conjointement les phones et les mots (−0.3pp), ce qui

indique que l’utilisation conjointe des phones et des syllabes n’est pas la combinaison idéale.

7.5.3 Syllabes et mots

Les résultats que nous obtenons en utilisant des syllabes et des mots sont présentés dans le

tableau 6.7. Une fois de plus, nous remarquons que R@1 est supérieur à une architecture à

une couche GRUPACK. (R@1 = 7.6,+2, 2pp) mais pire qu’une architecture à deux couches

traitant les phones et les mots : −0, 6pp. Le meilleur résultat est également inférieur au

meilleur résultat obtenu en utilisant des phones et des syllabes : −0.3pp. Cependant, nous

observons que l’architecture à deux couches est plus performante que la baseline (+1.0pp)

et plus performante que l’architecture à deux couches qui utilise conjointement les phones

et les syllabes (+0.7pp).

7.5.4 Conclusion

Nos expériences montrent que le meilleur résultat en utilisant deux couches GRUPACK.

est obtenu en utilisant conjointement les frontières des phones et des mots, lorsque les
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couches GRUPACK. sont placées au milieu de la pile de cellules récurrentes. Nous observons

également que, globalement, nos résultats atteignent leur maximum lorsque les couches se

suivent. Enfin, cette série d’expériences nous a permis de montrer que le réseau converge

mieux lorsque les segments de bas niveau (phones) et les segments de haut niveau (mots)

sont utilisés conjointement. Nous expliquons cela par le fait que cela permet au modèle

d’apprendre des représentations robustes pour les phones, tout en ayant des unités de haut

niveau qui portent beaucoup d’informations sémantiques. Par conséquent, l’utilisation de

segments intermédiaires tels que les syllabes n’est pas utile car elles sont trop longues pour

apprendre une représentation cohérente tout en étant trop courtes par rapport à la quantité

d’informations sémantiques qu’elles portent.

7.6 3 couches GRU Packager

Enfin, nous avons intégré trois niveaux de segments dans un seul modèle. Comme dans nos

expériences précédentes, nous expérimentons avec un nombre différent de couches (de 3 à

5), avec à chaque fois 3 couches GRUPACK. à chaque position possible. Les résultats de

cette expérience sont présentés dans le tableau 6.8.

Nous observons que le meilleur résultat obtenu avec cette architecture (R@1 = 9.6) est

bien meilleur que la baseline (+5.3pp), supérieur au meilleur résultat d’une architecture à

une seule couche (+4.2pp) mais aussi supérieur au meilleur résultat d’une architecture à

deux couches (+1.4pp sur l’architecture phonème-mot). Notre meilleur résultat est obtenu

par une architecture à cinq couches avec GRUPACK. en position 1, 3 et 4. Bien que nous

remarquions que le R@1 s’est amélioré lors de l’ajout d’un autre niveau de frontière dans

cette dernière expérience, nous observons également que le saut dans les résultats n’est pas

aussi important que ce que nous avons observé auparavant. En utilisant un seul GRUPACK.,

nous observons une amélioration de +1.1pp dans R@1 par rapport à notre architecture de

base. En utilisant deux GRUPACK., nous observons une amélioration de +2.8pp par rapport

à l’utilisation d’un GRUPACK.. Enfin, en utilisant un troisième GRUPACK., nous avons

observé une amélioration de +1.4pp par rapport à l’utilisation de deux GRUPACK.. Ainsi,

même si l’introduction de plus de structure dans le réseau est bénéfique, nous observons

également que certains niveaux sont plus critiques que d’autres et ont un effet plus important

sur le résultat final.

7.7 Conclusion du chapitre

Dans ce chapitre, nous avons étudié l’impact de la segmentation préalable de la parole dans

un modèle PVC. Nous avons présenté une méthode simple pour introduire des informations

de frontière dans n’importe quelle couche récurrente de notre architecture. Pour ce faire, il

suffit de réinitialiser l’historique du RNN chaque fois qu’il y a une limite de segment. Nous

avons constaté que la segmentation de la parole en sous-unités est utile : la segmentation en

mots donne de meilleurs résultats que la segmentation en phonèmes, mais nous observons

également que la segmentation en syllabes donne des résultats similaires à la segmenta-

tion en mots. Néanmoins, la segmentation en mots semble être une représentation plus

robuste. Nous avons observé des résultats différents selon le niveau auquel les informations

de segmentation sont introduites. Nous avons observé des effets négatifs si l’information de

frontière est introduite trop tard (dernière couche de notre architecture).

Néanmoins, même si l’introduction d’informations sur les frontières est utile, elle

n’améliore que légèrement les performances du réseau. Ce n’est que lorsque différents

niveaux sont combinés que les performances du réseau atteignent leur maximum. Nos

expériences révèlent qu’une structure qui utilise des segments de bas niveau (c’est-à-dire
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des phones) conjointement avec des segments de haut niveau (c’est-à-dire des mots) est

meilleure que l’utilisation de segments qui sont plus ou moins de la même taille (c’est-à-dire

l’utilisation conjointe de syllabes et de mots).
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8 Conclusion

8.1 Résumé des contributions

Dans cette thèse, nous avons étudié un modèle récurrent de parole visuellement contextua-

lisée. Notre objectif était d’analyser les représentations apprises par notre modèle afin de

mieux comprendre quelles connaissances linguistiques les modèles neuronaux sont capables

d’acquérir de manière non supervisée. Nous avons comparé ces représentations à ce qui

est connu du traitement de la parole humaine. Plus spécifiquement, nous nous sommes

concentrés sur l’acquisition lexicale et avons trouvé des points communs entre les proces-

sus à l’œuvre dans les modèles que nous avons étudiés et les processus rapportés dans la

littérature sur l’acquisition du langage chez l’enfant.

Plus précisément, les principales contributions de cette thèse sont :

• Le jeu de données image/parole STAIR. Nous avons introduit le jeu de données

image/parole STAIR qui est basé sur le jeu de données image/texte STAIR (Yo-

shikawa et al. 2017). Cet ensemble de données constitue l’équivalent japonais de

l’ensemble de données “Synthetically spoken COCO” (Chrupa la et al. 2017a) pour

l’anglais et permet d’entrâıner des modèles de parole visuellement contextualisée.

• Analyse de l’attention. Nous avons montré que les modèles basés sur les RNN sont

capables de détecter des motifs récurrents spécifiques dans l’entrée acoustique. Les

modèles que nous avons entrâınés se concentrent spécifiquement sur les mots concrets

tels que les noms, car ils se réfèrent à des objets qui sont particulièrement saillants dans

les images. Nous avons observé ce comportement pour deux langues typologiquement

distinctes, l’anglais et le japonais, montrant ainsi que ce comportement ne dépend pas

d’une langue particulière. Nous avons conclu que les modèles que nous avons étudiés

présentaient une préférence pour les noms, comme celle que l’on trouve également

chez les humains au cours du processus d’acquisition lexicale. Nous avons mis en

évidence que les modèles japonais ont appris à détecter et à mettre en évidence des

particules (comme la particule “ga”), et montrent ainsi un comportement spécifique à

la langue. Ce faisant, les modèles ont adopté le même comportement que les enfants

japonais afin de segmenter le flux de parole. La capacité des réseaux à mettre en

évidence les noms — et les particules pour le japonais — est un comportement que

les réseaux ont appris à adopter avec très peu d’exemples — moins de 500 paires

image/légende — montrant que le réseau apprend rapidement quelles sont les parties

les plus importantes des légendes.

• Analyse de la connaissance des mots isolés. Nous avons montré que le réseau était

capable d’associer des noms individuels à leurs référents visuels corrects. Cela suggère

que le réseau segmente implicitement son entrée en sous-unités, puis les associe à un

contexte visuel. Cependant, nous avons observé que le réseau n’était pas capable

d’associer tous les noms isolés à leurs référents visuels de manière égale ce qui suggère

que le lexique du modèle est limité à un ensemble spécifique de mots. Nous avons

observé que ce phénomène était principalement dû à la fréquence du mot dans la

légende : plus une forme de mot est fréquente, mieux le modèle la relie à son référent

visuel.

Nous avons ensuite étudié comment le réseau active un mot isolé et l’avons comparé

aux modèles d’activation et de reconnaissance des mots chez l’homme. En utilisant

un équivalent algorithmique du paradigme du gating de Grosjean (1980, 1985), une

méthodologie issue de la psycholinguistique, nous avons pu observer que l’activation
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des mots ne se produit pas de manière linéaire, mais évolue plutôt par étapes. Ceci

nous a permis de conclure que le modèle était capable de reconnâıtre un mot à partir

d’une entrée partielle, c’est-à-dire avant la fin de celui-ci. Nous avons montré que le

réseau devait nécessairement avoir accès au premier phonème d’un mot pour pouvoir

activer la représentation du mot cible. Ce résultat est similaire à ce qui est postulé

dans le modèle Cohort de reconnaissance de la parole, où le début des mots est d’une

importance particulière pour activer et reconnâıtre un mot. Nous avons cherché à sa-

voir si la reconnaissance des mots s’effectuait par un processus d’activation simultanée

d’une cohorte de mots, qui seraient ensuite en compétition pour la reconnaissance.

Nous avons trouvé des preuves d’activations simultanées pour certains mots et de

compétition entre eux, cependant, ce processus semble loin d’être systématique, car

nous avons montré que certains mots sont activés sans entrer en compétition avec des

mots à consonance similaire.

• Introduction d’informations linguistiques préalables. Enfin, nous avons cherché

à savoir si l’introduction d’informations linguistiques préalables sous la forme

d’informations sur les frontières de segments était bénéfique. Nous avons en effet

constaté que le réseau pouvait utiliser de manière adéquate de telles informations,

en particulier lorsque le réseau recevait des frontières de mots. Le réseau utilise de

manière adéquate les informations sur les limites des phonèmes et des syllabes, mais

moins que les frontières des mots. Plus important encore, nous avons constaté que

la prise en compte de la nature hiérarchique de la parole, en donnant simultanément

au réseau les frontières des phonèmes, des syllabes et des mots, donnait des résultats

encore meilleurs.

Dans son livre, Bloom (2002, p. 60) soutient que “les enfants apprennent le sens des

mots par la théorie de l’esprit. Si cela est vrai, alors une mise en œuvre connexionniste

directe de l’apprentissage des mots, dans laquelle les sons sont associés à des percepts, est

irréalisable. (Et cela exclut toutes les théories connexionnistes de l’apprentissage des mots

dont [il] a connaissance)”. Nous pensons que les expériences que nous avons menées dans

cette thèse, ainsi que les travaux précédents de Harwath et al. (2016), Harwath & Glass

(2017), Chrupa la et al. (2017a), Merkx et al. (2019) (entre autres) montrent que les mo-

dèles purement connexionnistes sont capables d’associer directement les sons aux percepts,

ici sous la forme de représentations vectorielles de stimuli visuels. Par conséquent, les mo-

dèles connexionnistes sont capables d’apprendre des mots dans une certaine mesure. Bien

entendu, nous ne prétendons pas que l’acquisition lexicale chez l’enfant se fait uniquement

via un mécanisme purement associatif, mais il se pourrait qu’un mécanisme d’apprentissage

purement associatif permette d’amorcer l’acquisition lexicale chez l’enfant. Un argument

contre ce fait pourrait être que les approches connexionnistes nécessitent de grandes quanti-

tés de données pour être entrâınées efficacement. Cependant, nos expériences montrent que

nos modèles ont appris à se concentrer sur des noms spécifiques avec un très petit nombre

d’exemples, ce qui suggère que l’amorçage associationniste constitue un mécanisme viable

pour acquérir un lexique.

Les expériences que nous avons menées dans cette thèse nous permettent de conclure que

les modèles PVC segmentent implicitement leur entrée en sous-unités et associent ces sous-

unités à leur référent visuel. Ce processus ne semble émerger que comme un sous-produit

de leur tâche principale qui est de minimiser la distance entre un stimulus acoustique et un

stimulus visuel correspondant. Notre conclusion est en accord avec le travail très récent de

Khorrami & Räsänen (2021).



210 Résumé Étendu en Français

8.2 Futurs travaux

Compte tenu des travaux que nous avons menés dans cette thèse, plusieurs travaux futurs

pourraient être réalisés :

• Activation des mots dans les modèles basés sur les CNN. Nous avons étudié comment

les modèles basés sur les RNN stockent les unités lexicales et activent la représentation

des mots individuels en utilisant le paradigme de gating. Cette méthodologie pourrait

également être appliquée pour analyser les représentations apprises par les modèles

basés sur les CNN (tel que celui de Harwath & Glass (2017)) afin de comprendre

comment la représentation d’un mot donné est activée dans ces modèles. Un modèle

CNN tel que Harwath & Glass (2017) nous permettrait de reproduire directement les

expériences linguistiques qui mesurent la reconnaissance et la compétition des mots à

l’aide de dispositifs d’oculométrie tels que celui de Huettig & McQueen (2007).

• Image-To-Speech. Nous aimerions également étudier comment des réseaux Image-

To-Speech (tels que ceux de Hsu et al. 2020 et Wang et al. 2020), qui produisent

de la parole à partir d’une image d’entrée, apprennent progressivement à produire

leurs premières phrases, et comparer cette évolution à celle des enfants. En effet,

lorsque les enfants apprennent à parler, ils ne commencent pas par prononcer des

phrases complètes, mais plutôt par produire des mots isolés. Plus tard, ils produisent

des phrases de deux mots et, à partir de ce moment, ils commencent à produire des

phrases complètes. Il serait intéressant d’étudier si un modèle Image-To-Speech passe

par les mêmes étapes que les enfants et, dans le cas contraire, d’en étudier les raisons.

De même, une telle expérience permettrait de mieux comprendre le développement

linguistique des enfants en étudiant les représentations apprises par un tel modèle.

• Segmentation discrète. Les expériences menées dans le chapitre 6 révèlent que le

fait de donner une segmentation explicite améliore la capacité des modèles à faire

correspondre correctement une légende parlée à son contexte visuel. Il serait donc

souhaitable que le réseau apprenne à segmenter explicitement l’entrée parlée en sous-

unités. Plusieurs options, telles que celles proposées par Kreutzer & Sokolov (2018),

Chen et al. (2019) et Shain & Elsner (2020) sont à explorer.

En conclusion, les modèles neuronaux de parole à base visuelle offrent des opportunités

inestimables pour étudier et tester des hypothèses sur l’acquisition du langage chez l’enfant,

grâce à leur capacité à modéliser des interactions complexes à travers plusieurs modalités.

De nouveaux ensembles de données, tels que l’ensemble de données SEEDLingS (Bergelson

& Aslin 2017) ou l’ensemble de données récemment collecté par Tsutsui et al. (2020), qui

sont des enregistrements à grande échelle recueillis dans des environnements écologiques

(Dupoux 2018), permettront aux chercheurs de simuler l’acquisition du langage avec des

données plus réalistes que jamais.
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