LEXICAL EMERGENCE FROM CONTEXT: EXPLORING UNSUPERVISED LEARNING APPROACHES ON LARGE MULTIMODAL LANGUAGE CORPORA

William N. Havard

1. Context

2. Model & Data

3. Experiments

• Behaviour of Attention

Havard, W. N., Chevrot, J.-P. & Besacier, L. (2019), Models of Visually Grounded Speech Signal Pay Attention to Nouns: A bilingual Experiment on English and Japanese, ICASSP2019

• Word Recognition, Competition, and Activation

Havard, W. N., Chevrot, J.-P. & Besacier, L. (2019), Word Recognition, Competition, and Activation in a Model of Visually Grounded Speech, CoNLL2019

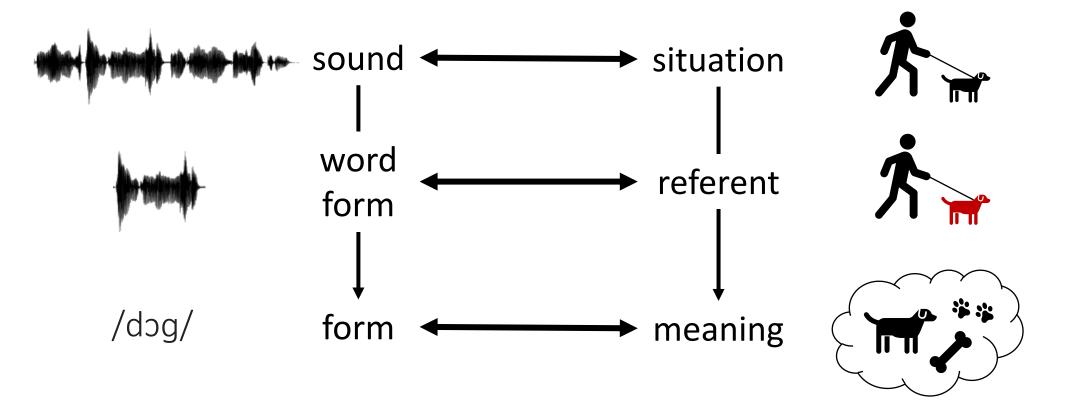
Introduction of Linguistic Information

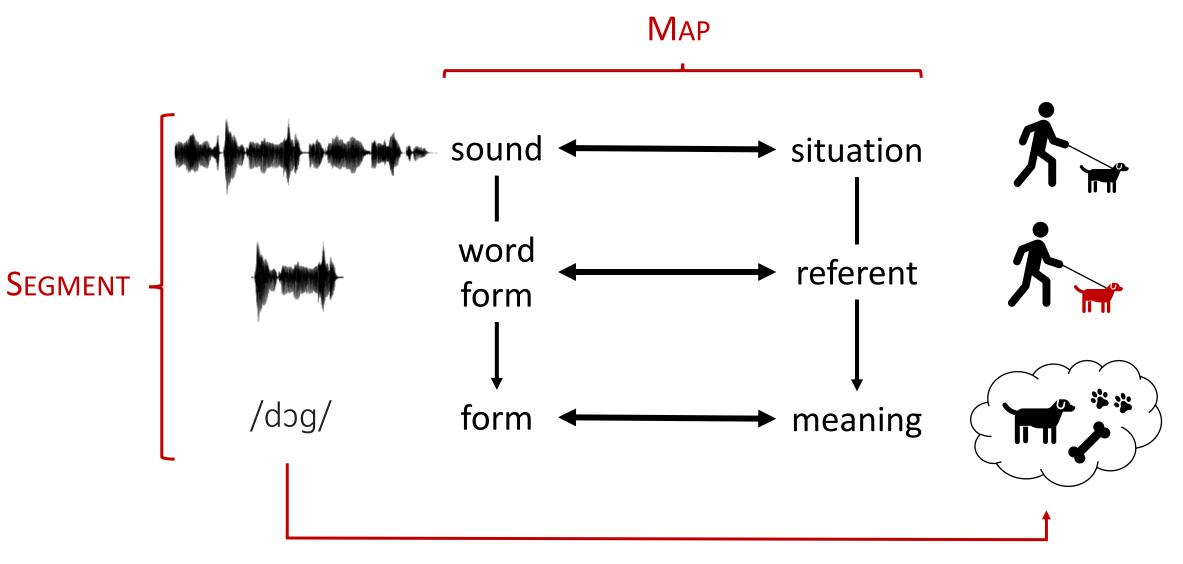
Havard, W., , Chevrot, J.-P. & Besacier, L. (2020), Catplayinginthesnow: Impact of Prior Segmentation on a Model of Visually Grounded Speech, CoNLL2020

4. Conclusion

CONTEXT — LANGUAGE ACQUISITION

 "the child's input consists of sound/situation pairs, but his final output is a set of form/meaning pairs" [Landau & Gleitman, p.7, 1985]





RECOGNISE

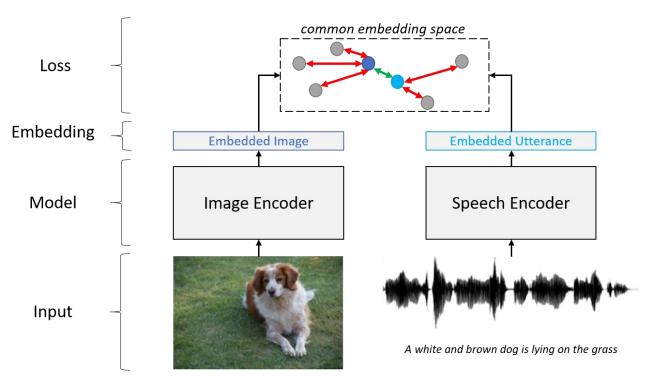
- Contextual information
 - Vision, touch, smell, ...
 - Social interactions
- Vision
 - essential to enter joint attention frames
 - used to map word-forms to their referents
 - lack of visual input slightly hinders language acquisition [Andersen et al., 1984; Dunlea, 1989]

mutual awareness of what

.5. 100×100

the other is a

. ETTRADING



- Trained on a **speech** *image* **retrieval task**
- Either CNN-based [Gabriel et al., Harwath et al., Kamper et al.] or RNN-based [Chrupała et al., Merkx et al.]
- Project images and paired spoken captions in a common representation space

- Hypothesis: VGS models also have to transition from sound/situation pairs to form/meaning pairs to solve their task
- Same tasks as children
 - SEGMENTATION
 - MAPPING
 - **RECOGNITION**
- Develop linguistic abilities as a by-product of their task

PREVIOUS WORKS — CNN-BASED MODELS

\rightarrow fine-grained audio-visual mappings

- map words to their visual referent [Harwath et al., 2017]
- \rightarrow language agnostic
 - English, Hindi & Japanese [Harwath et al., 2018]

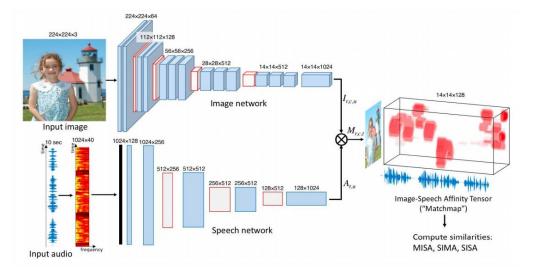


Fig. from Harwath et al., 2018

\rightarrow form in lower layers, meaning in higher layers

- lower layers: clusters according to speaker indentity
- upper layers: clusters according to meaning
 [Drexler et al., 2017]

\rightarrow implicit segmentation

sensitivity to phone boundaries [Harwath et al., 2019]

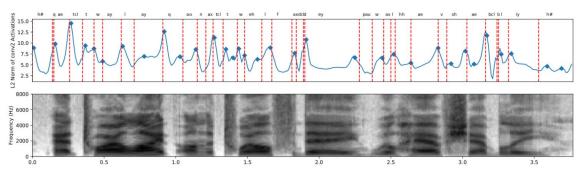


Fig. from Harwath et al., 2019

\rightarrow models encode presence of individual words

- word presence/absence task
- not all layers are equally informative [Chrupała et al., 2017; Merkx et al., 2019]

\rightarrow form in lower layers, meaning in higher layers

[Chrupała et al., 2017; Alishahi et al., 2017]

Attention: size 512
Recurrent 5: size 512
Recurrent 4: size 512
Recurrent 3: size 512
Recurrent 2: size 512
Recurrent 1: size 512
Convolutional: size 64, length 6, stride 3
Input MFCC: size 13

Fig. from Alishahi et al., 2017

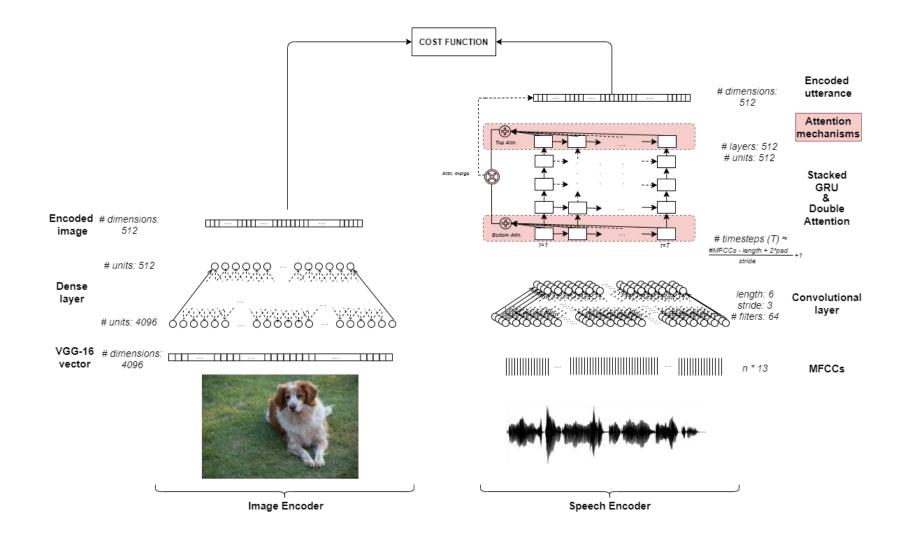
→ Do RNN-based VGS models learn to **detect specific words** in the speech signal?

 \rightarrow How is the semantic representation of a word activated?

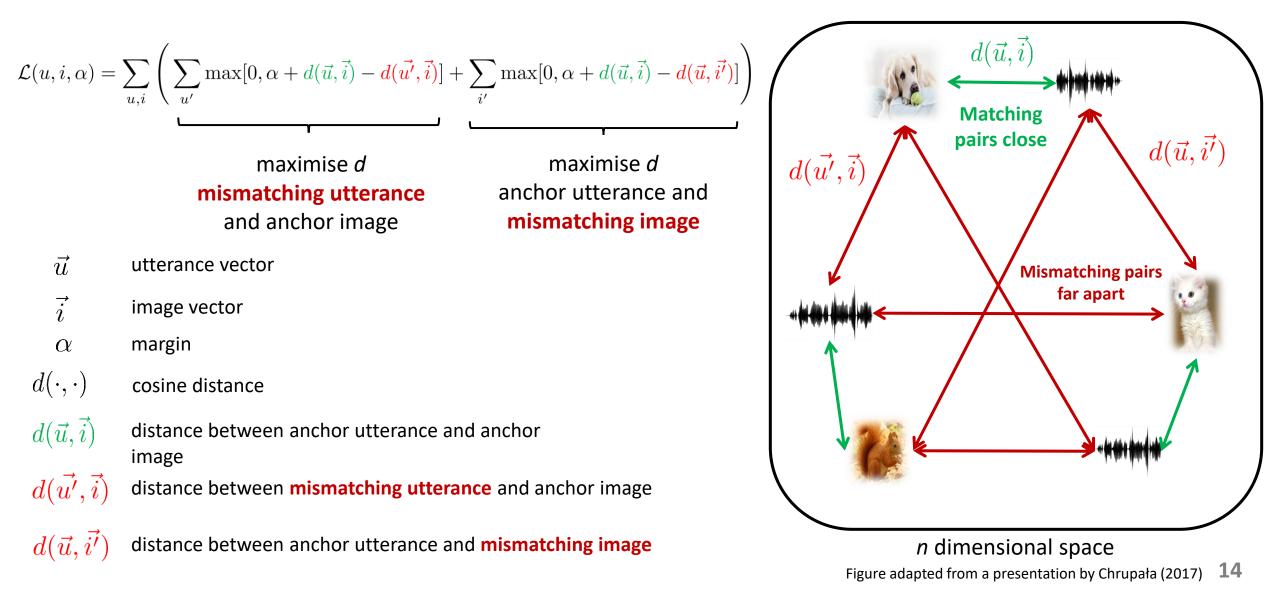
→ Is an **implicit segmentation** as efficient as an **explicit segmentation**?

MODEL & DATA

• Model by [Chrupała et al., 2017]



TRIPLET LOSS



DATA SETS

Image Captionning Data Sets and their audio extensions

- MSCOCO [Lin et al., 2017]
- **STAIR** [Yoshikawa et al., 2017] → **Synthetically Spoken STAIR** [Havard et al., 2019]
- FLICKR8k [Hodosh et al., 2013] → Flickr8k Audio Caption Corpus [Harwath et al., 2015]

→ Synthetically Spoken COCO

Photo by Martha de Jong-Lantink, CC BY-NC-ND 2.0 Fig. 492506 from MSCOCO

MSCOCO (English)

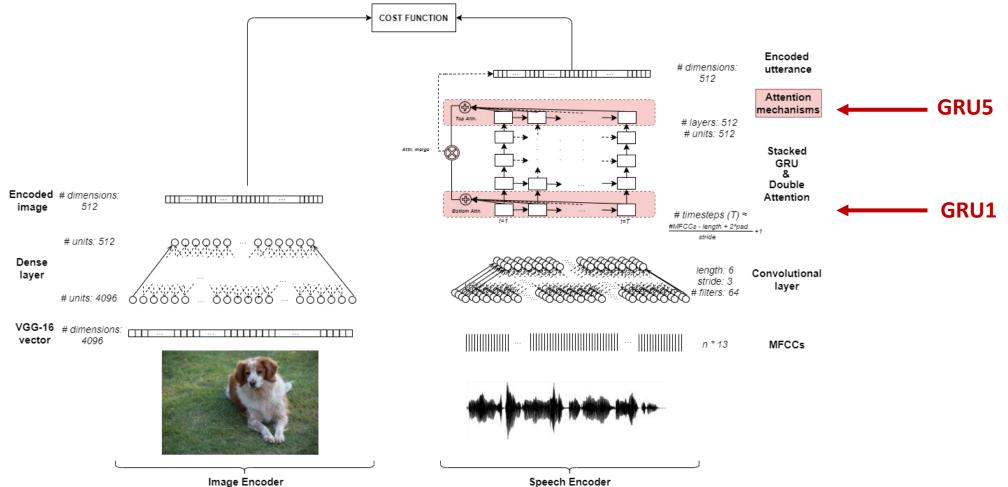
[Chrupała et al., 2017]

there are three giraffes together in the wild three giraffes are standing on the plains of africa *(sic)*. three giraffes walking in a field with trees in the background the three giraffes walk together in the safari. some animals that are around the grass together.

STAIR (Japanese)	STAIR (Translation)
キリンが3匹草原の中を歩いている 3頭のうち1頭のキリンはロを少し開け ている 草地を三頭のキリンが歩いている キリンが3頭草原をあるいている 三頭のキリンが草原を歩いている	Three giraffes walking in the meadow One of the three giraffes has a slightly open mouth Three giraffes are walking in the grassland Three giraffes in the meadow Three giraffes walking in the meadow

BEHAVIOUR OF ATTENTION

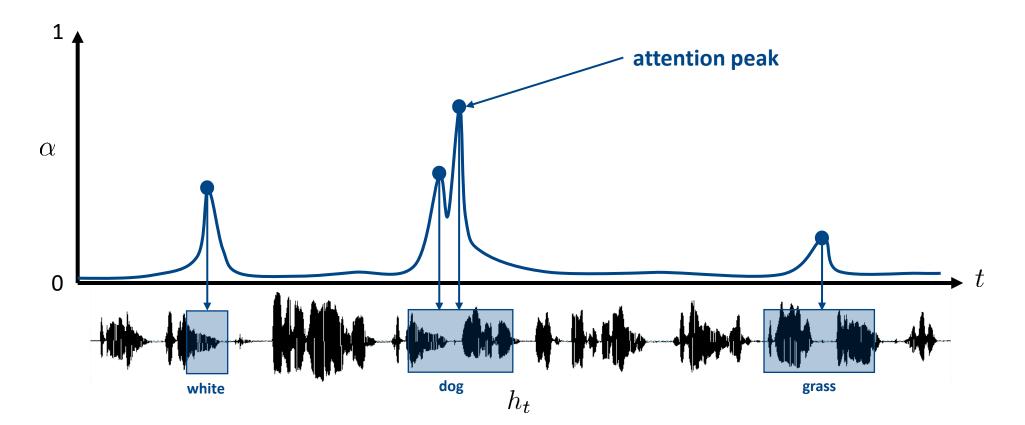
• Model by [Chrupała et al., 2017]



- Does the model rely on **specific parts** in the speech signal for its predictions?
 - Analysis of the **attention weights**
 - specific part-of-speech (nouns, adjectives, etc.) ?
 - specific words?
- How is this different from chance?

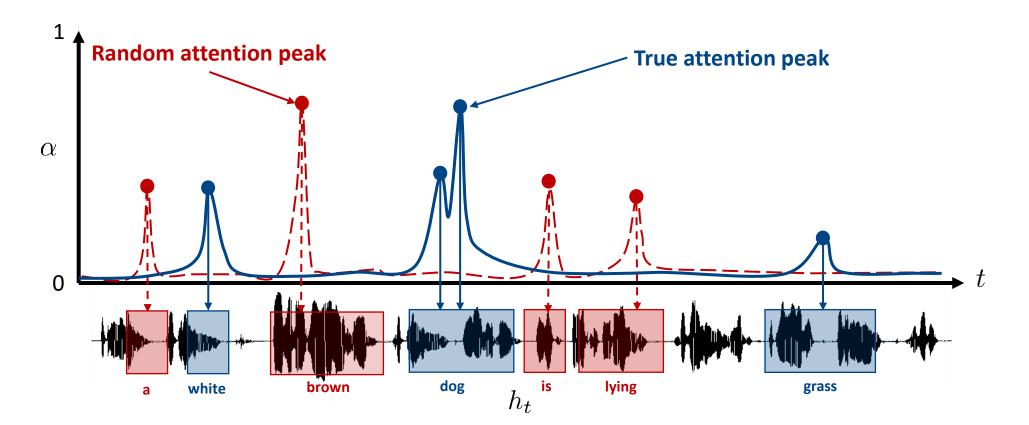
$$c = \sum_{t=1}^{T} \alpha_t h_t$$

- Where α_t is the **attention weight** for the t^{th} vector h
- Trainable component: the network learns to assign a weight



$$c = \sum_{t=1}^{T} \alpha_t h_t$$

- Where α_t is the **attention weight** for the t^{th} vector h
- True attention v. Random attention

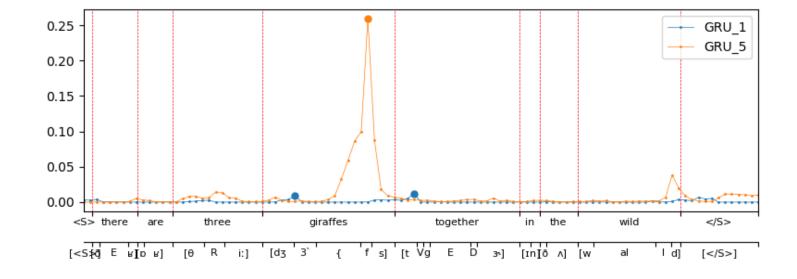


• Recall@1

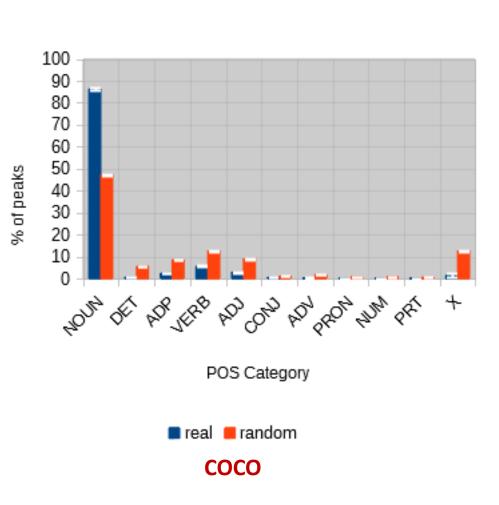
• Evaluates model's ability to rank the target paired image as the top 1 image

	\mathbf{Model}	$\mathbf{R}@1$	$\mathbf{R@5}$	$\mathbf{R@10}$	\widetilde{r}
gru {	English (ours)	5.52 ± 0.31	18.26 ± 0.82	28.64 ± 1.15	27.4 ± 1.51
	Japanese (ours)	5.3 ± 0.16	17.88 ± 0.41	27.92 ± 0.36	29.2 ± 0.44
rhn -{	English (Chrupała, 2017)	11.1	31.0	44.4	13
	Random	0.02	0.1	0.2	2500.5

BEHAVIOUR OF ATTENTION - ENGLISH



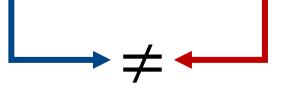
BEHAVIOUR OF ATTENTION - RESULTS ENGLISH



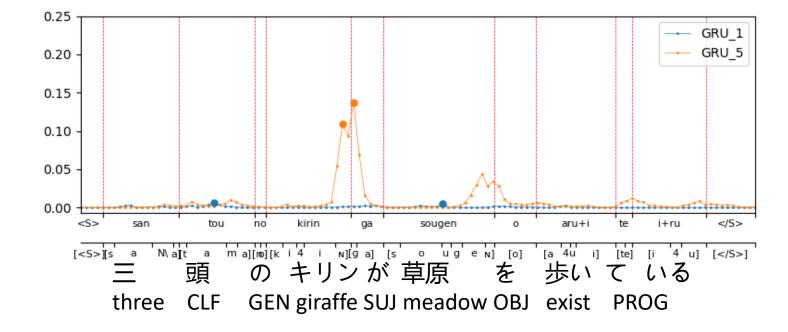
Peak Distribution

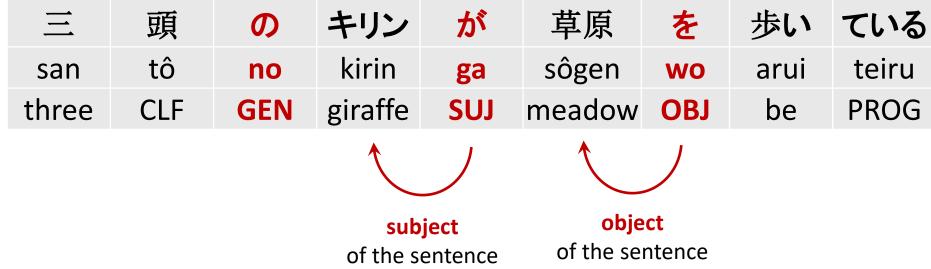
Top 10 Highlighted Words

Word	TRUE Peaks		RANDOM	I Peaks
Rank	Word	% peak	Word	% Peak
1	train	2.04		9.15
2	tennis	1.73	а	3.47
3	toilet	1.53	<s></s>	2.47
4	baseball	1.50	on	1.96
5	skateboard	1.46	with	1.26
6	dog	1.45	in	1.22
7	cat	1.44	of	1.18
8	giraffe	1.39	man	1.08
9	pizza	1.35	and	1.04
10	kitchen	1.35	standing	1.02



BEHAVIOUR OF ATTENTION — JAPANESE



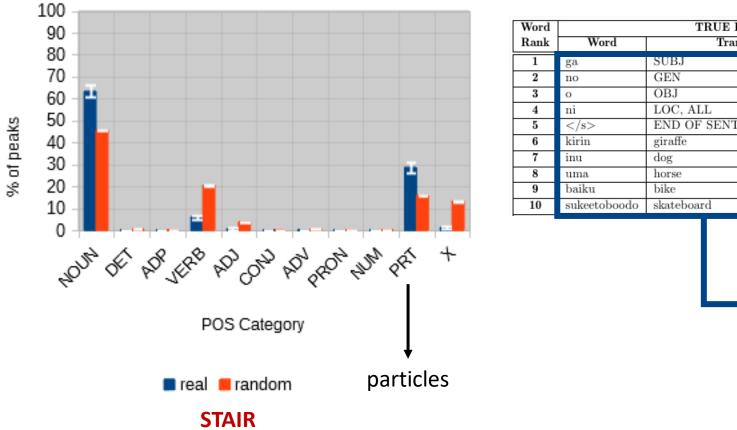


- Particles
 - Grammatical words: indicate the function of the preceding word in the sentence
- Main particles
 - ・が (ga): subject
 - ・を (wo): object
 - ・は (ha): topic
 - ・の (no): genetive

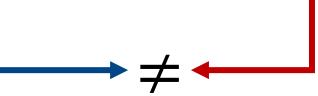
BEHAVIOUR OF ATTENTION — RESULTS JAPANESE

Peak Distribution

Top 10 Highlighted Words



Word	TRUE Peaks			RANDOM Peaks		
Rank	Word	Translation	% peak	Word	Translation	% Peak
1	ga	SUBJ	13.18		END OF SENTENCE	9.97
2	no	GEN	5.35	i+ru	to be	5.65
3	0	OBJ	3.51	no	GEN	4.00
4	ni	LOC, ALL	3.34	ga	SUBJ	3.45
5		END OF SENTENCE	1.67	ni	LOC, ALL	2.55
6	kirin	giraffe	1.61	$\langle s \rangle$	START OF SENTENCE	2.47
7	inu	dog	1.39	0	OBJ	2.05
8	uma	horse	1.27	dansei	man	1.79
9	baiku	bike	1.18	te	particle of reason, state	1.64
10	sukeetoboodo	skateboard	1.11	a+ru	to be	0.95



- Models are language agnostic
 - Work equally well when trained on **English and Japanese** data
- Models use attention to focus on **specific words** and adopt...
 - a language-general behaviour: focus on nouns
 - a language-specific behaviour: focus on particles
- Reminds us of known psycholinguistic phenomena
 - Noun bias [Gentner, 1982]
 - "ga" particle [Haryu, 2016]

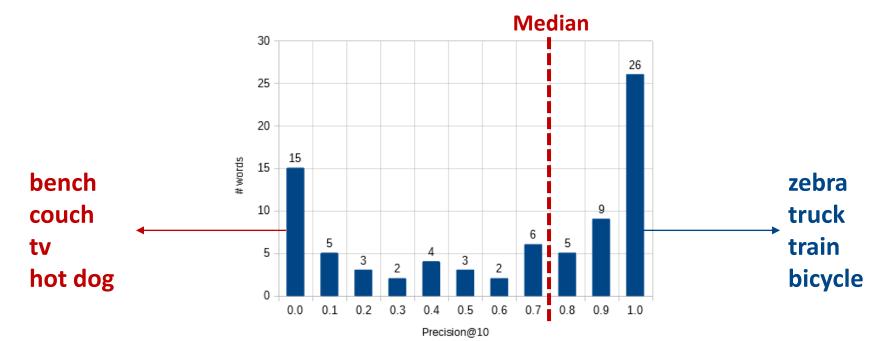
"by 15 months of age, Japanese-learning infants become able to **use** the frequent particle **ga** to segment adjacent nouns from fluent speech"

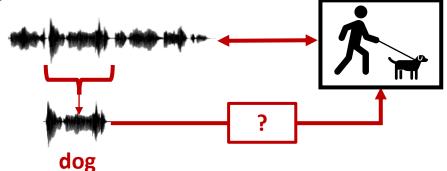
WORD RECOGNITION, COMPETITION, AND ACTIVATION

- Models are able to detect specific words ...
 - Are they able to map them to their visual referent?
 - How do they activate the semantic representation of a word?

ISOLATED WORD RECOGNITION

- Input the network with **isolated words instead of full captions**
- If the network retrieves images with the target objet
 - proof of (implicit) segmentation during training
 - correct word/object mapping
- Experiment on 80 target words
 - P@10: is there at least one image that features the target object among the 10 first?





Gating Paradigm

"The gating paradigm involves the **repeated presentation of a spoken stimulus** (in this case, a word) **such that its duration from onset is increased with each successive presentation**." [Cotton & Grosjean, 1984]

→ Measure how word activation is carried out by the network

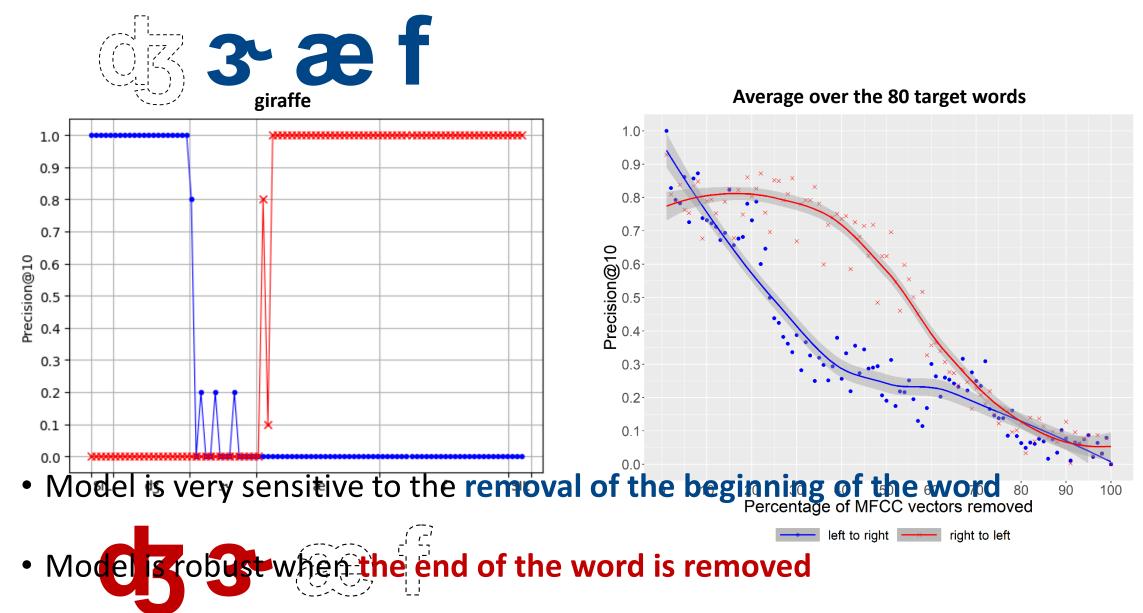
dz3-æf

Measure the importance of the word's onset

- To activate the semantic representation of a word, what information is ...
 - necessary?
 - sufficient?

Measure the importance of the word's offset

WORD ACTIVATION



- Activation requires access to the beginning of the word
 - **COHORT**-like activation [Marslen-Wilson et al., 1978]

- Word recognition can occur from a partial input (before its offset)
 - Also happens in human word recognition

INTRODUCING PRIOR LINGUISTIC INFORMATION

INTRODUCING PRIOR LINGUISTIC INFORMATION

- Models trained on full unsegmented captions
 - Detect the relevant words
 - Map/recognised

\rightarrow How efficient would the network be with segmented captions ?

 \rightarrow The network would "only" have to learn a better mapping

\rightarrow Which segmentation would help the network best?

Example: This is an article [ðɪs # ız # ən # aɹtıkəl]

• Phones

ðısızənajtıkəl

- Syllables-Connected (w/ resyllabification)

 ðIs IZ ƏN QJ TI kəl
- Syllables-Word (w/o resyllabification)

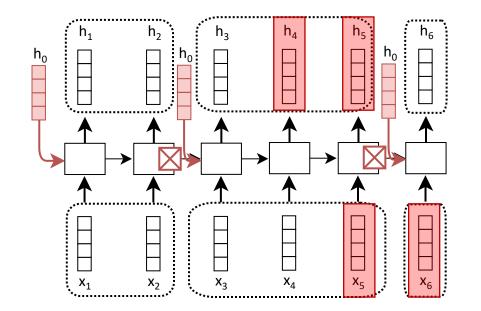
ðīs iz ən aı ti kəl

• Word

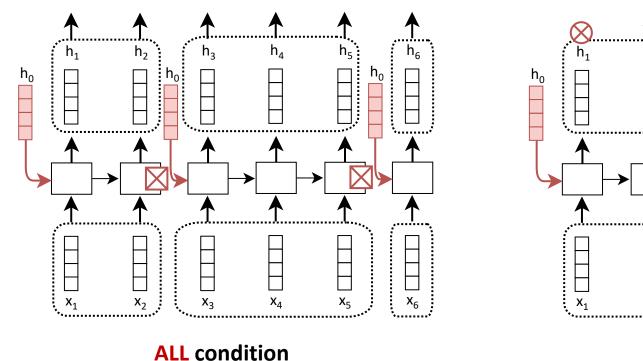
ðis iz ən altikəl

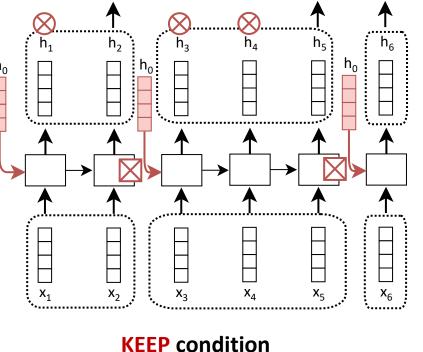
GRU PACKAGER

- How to **introduce** segment boundary information?
 - Know where a segment begins/ends
 - Pass h₀ instead of h_n
 - Vectors belonging to the same segment: temporally dependant
 - Vectors belonging to a **different segment**: **temporally** *independant*



- ALL condition
 - all the vectors belonging to a segment are forwarded to the next layer
- KEEP condition
 - only the last vector belonging to a segment is forwarded to the next layer

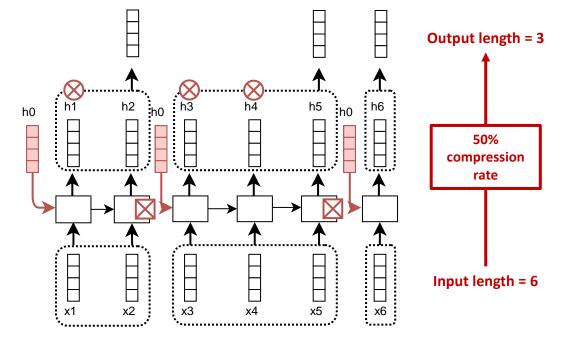




• KEEP condition : compression

Compression/sub-sampling rates

- phones 90.5%
- syllables-connected 93.4%
- syllables-word 94.3%
- words 95%



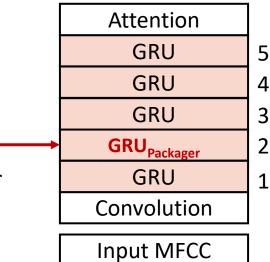
KEEP condition

• Use random boundaries as a control condition

- sample as many random boundaries as true boundaries
- Experiments:
 - Vary the type of boundaries used (phones, syllables, and words)
 - Use either TRUE or RANDOM boundaries
 - Vary the **position** of the GRU_{Packager} layer (from layer 1 to 5)
 - Instead of having 5 vanilla GRU layers, change one of them for a GRU_{Packager} layer
 - Vary the type of GRU_{Packager} : ALL or KEEP

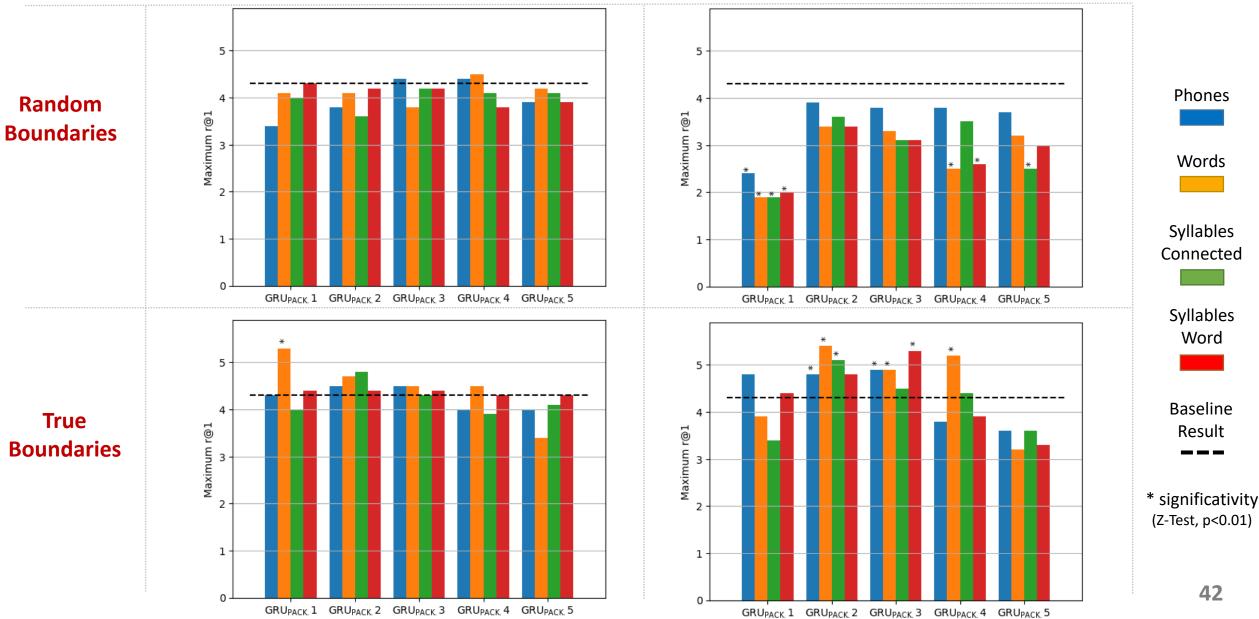
\rightarrow 80 models in total

+ BASELINE model (no boundary used, 5 vanilla GRU layers)



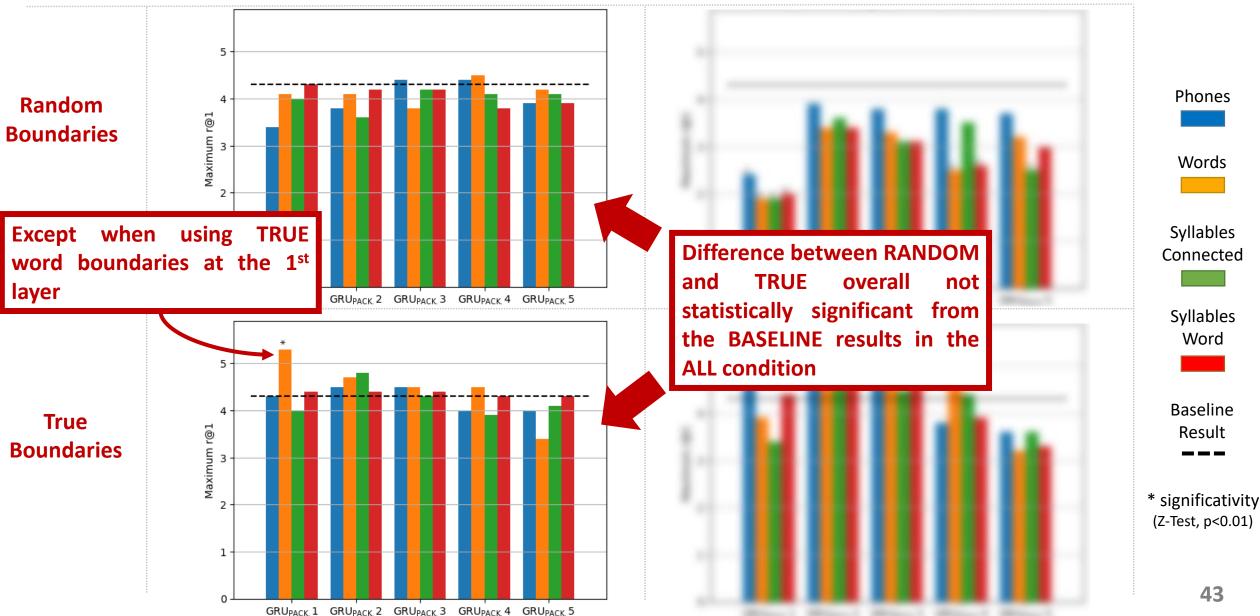
ALL Condition

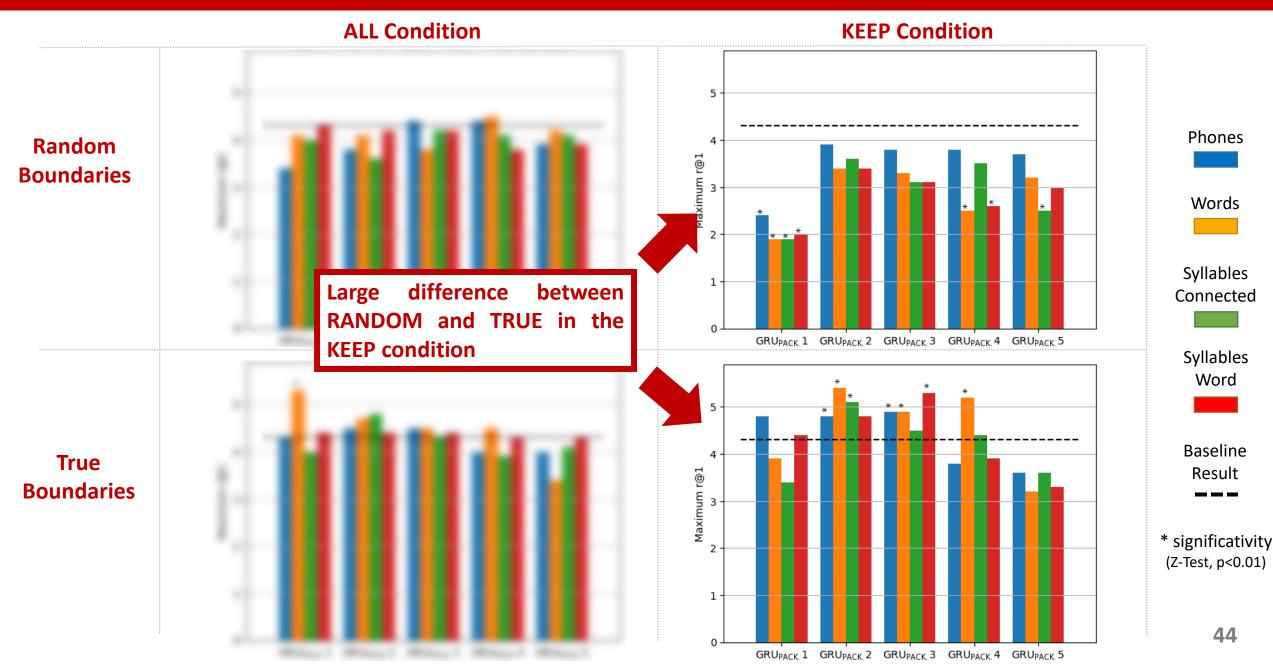
KEEP Condition

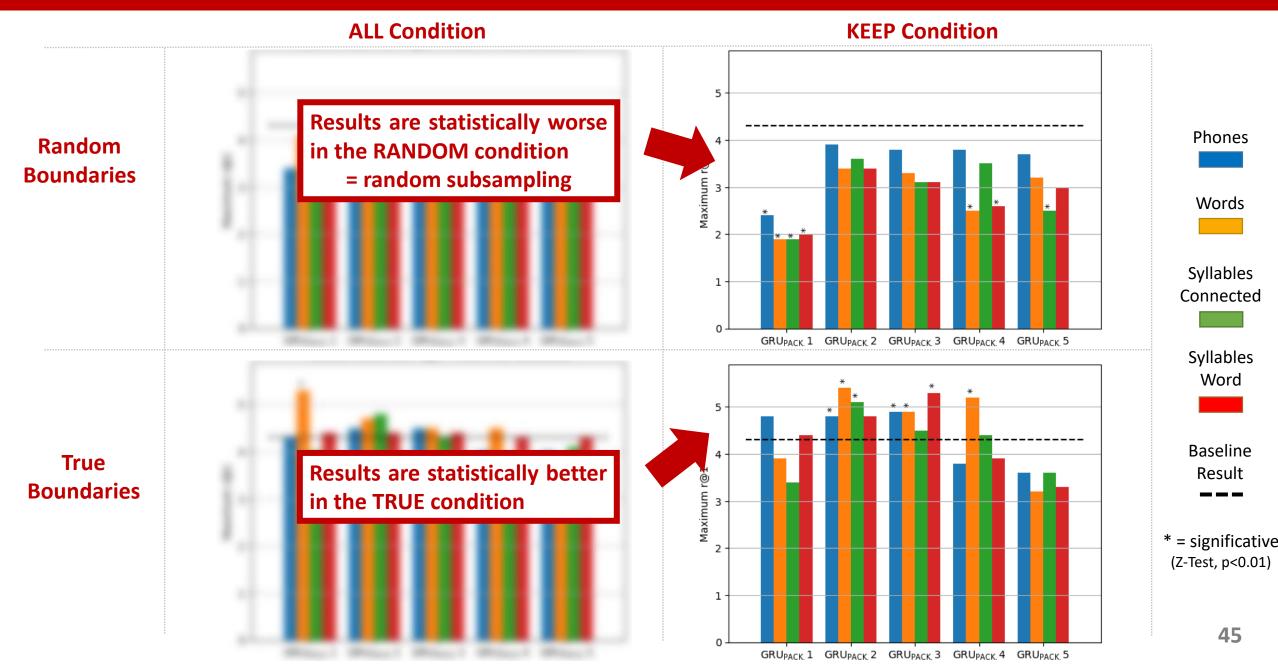


ALL Condition

KEEP Condition

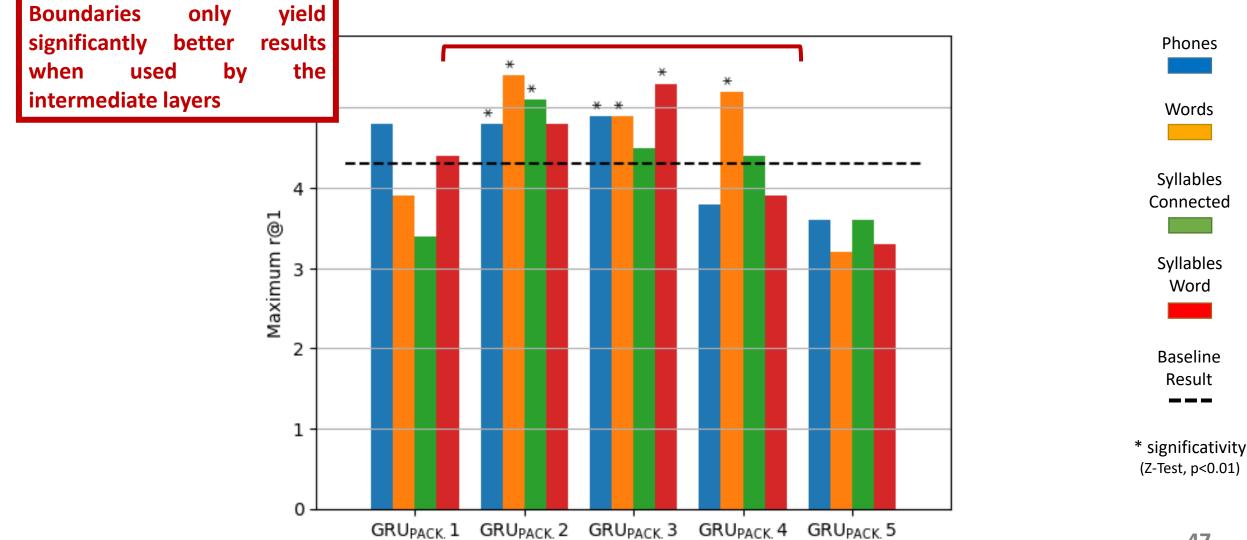


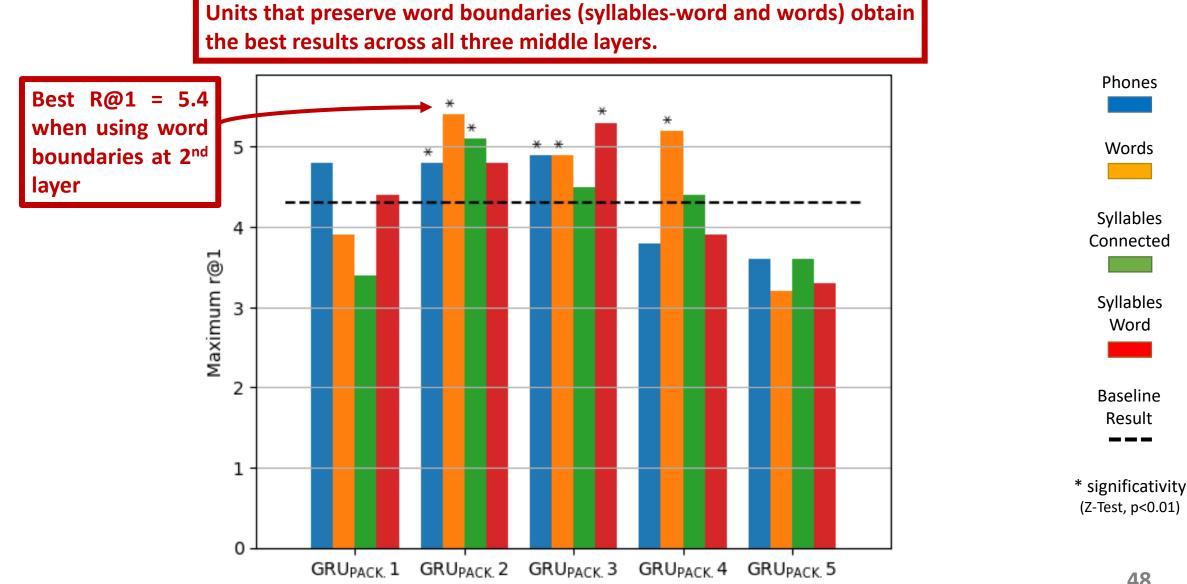




TRUE Boundaries - KEEP Condition Giving boundary information at the 1st and 5th layer does Phones not yield better results than the baseline 5 Words Syllables 4 Connected Maximum r@1 Syllables 3 Word 2 Baseline Result 1 * significativity (Z-Test, p<0.01) 0 GRUPACK 1 GRUPACK 2 GRUPACK 3 GRUPACK 4 GRUPACK 5

TRUE Boundaries - KEEP Condition





- Is segmenting speech into sub-units beneficial?
 - Yes! + 1.1pp over the baseline
 - Large units that preserve word boundaries yield the best results
- Introducing hierarchy yields even better results!
 - +3.9pp over the baseline architecture when using 2 GRU_{Packager}
 - +5.3pp over the baseline architecture when using 3 GRU_{Packager}
- Strong **difference** between **ALL** and **KEEP**
 - KEEP enforces the network to learn **better representations**

CONCLUSION

MAIN CONTRIBUTIONS OF THIS THESIS

- Synthetically Spoken STAIR data set
- Analysis of Attention in an RNN-based VGS models
 - Focus on nouns
 - Focus on particles
 - Quickly acquired behaviour
- Analysis of individual word knowledge and word/referent mapping
 - Taking inspiration from methodologies stemming from the psycholinguistics literature
 - May occur from a partial input
 - Sensitive to the presence/absence of words' onsets
- Effect of the Incorporation of **Prior Linguistic Information**
 - Models fare better when speech is explicitly segmented
 - Even if the input if strongly compressed/subsampled (KEEP condition)

 "children learn the meanings of words through theory of mind. If this is right, then a direct connectionist implementation of word learning, in which sounds are associated with percepts, is unfeasible. (And this does preclude all connectionist theories of word learning that I'm aware of.)".

[Bloom, 2002]

- Apparently it is feasible... for a neural network
- A purely associative learning mechanism *could* bootstrap lexical acquisition in children

- Incorporate a **segmenting mechanism** into the network [Kreutzer, 2019; Shain, 2017; Shain 2020]
 - Similar patterns as child language acquisition?
 - What units are segmented?
- Work on child language acquisition data sets
 - SEEDlingS data set [Bergelson et al., 2017] or data set by [Tsutsui, 2020]

Personal Bibliography

Havard, W. N., Besacier, L. & Chevrot, J.-P. (2020), **Catplayinginthesnow: Impact of Prior Segmentation on a Model of Visually Grounded Speech**, in Proceedings of the 24th Conference on Computational Natural Language Learning (CoNLL), Association for Computational Linguistics, pp. 291--301. URL: <u>https://www.aclweb.org/anthology/2020.conll-1.22</u>

ų	

*Zanon Boito M., *Havard W. N., Garnerin M., Le Ferrand E & Besacier L. (2020), **MaSS: A large and clean multilingual corpus of** sentence-aligned spoken utterances extracted from the Bible. In Proceedings of the Twelfth International Conference on Language Resources and Evaluation (LREC2020), Marseille, France. European Language Resources Association (ELRA), pp. 6486--6493. URL: https://www.aclweb.org/anthology/2020.lrec-1.799

Havard, W. N., Chevrot, J.-P. & Besacier, L. (2019), **Models of Visually Grounded Speech Signal Pay Attention to Nouns: A bilingual Experiment on English and Japanese**, in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8618--8622. URL: <u>https://doi.org/10.1109/icassp.2019.8683069</u>

Havard, W. N., Chevrot, J.-P. & Besacier, L. (2019), **Word Recognition, Competition, and Activation in a Model of Visually Grounded Speech**, in Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), Association for Computational Linguistics, Hong Kong, China, pp. 339--348. URL: <u>https://www.aclweb.org/anthology/K19-1032</u>

He, X., Tran, Q., Havard, W. N., Besacier, L., Zukerman, I. & Haffari, G. (2018) **Exploring textual and speech information in dialogue act** classification with speaker domain adaptation. In `Proceedings of the Australasian Language Technology Association Workshop 2018', Dunedin, New Zealand, pp. 61--65. URL: <u>https://www.aclweb.org/anthology/U18-1007/</u>

u	
-	

Havard, W. N., Besacier, L. & Rosec, O. (2017), SPEECH-COCO: 600k Visually Grounded Spoken Captions Aligned to MSCOCO data Set, in Proceedings of the GLU 2017 International Workshop on Grounding Language Understanding', pp. 42--46. URL: <u>http://dx.doi.org/10.21437/GLU.2017-9</u>

Havard, W. N., Chevrot, J.-P., & Besacier L. (2018), `Emergence of attention in a neural model of visually grounded speech'. Learning Language in Humans and in Machines 2018 conference, ENS Paris, Poster (Peer Reviewed Abstract).URL: <u>https://hal.archives-ouvertes.fr/hal-01970514/document</u>

Τηανκ Υου!

References

Alishahi, A., Barking, M. & Chrupa Ia, G. (2017), Encoding of phonology in a recurrent neural model of grounded speech, in 'Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)', Association for Computational Linguistics, Vancouver, Canada, pp. 368-378.

Andersen, E. S., Dunlea, A. & Kekelis, L. S. (1984), `Blind children's language: resolving some differences', Journal of Child Language 11(3), 645-664. Dunlea, A. (1989), Vision and the emergence of meaning: blind and sighted children's early language, Cambridge University Press, Cambridge [England]; New York

Bergelson, E. & Aslin, R. N. (2017), 'Nature and origins of the lexicon in 6-mo-olds', Proceedings of the National Academy of Sciences 114(49), 12916-12921.

Chrupala, G., Gelderloos, L. & Alishahi, A. (2017a), Representations of language in a model of visually grounded speech signal, in `Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pp. 613-622.

Drexler, J. & Glass, J. (2017), Analysis of Audio-Visual Features for Unsupervised Speech Recognition, in 'Proc. GLU 2017 International Workshop on Grounding Language Understanding', pp. 57-61.

Gabriel, S., Maarten, V. & Dupoux, E. (2014), Learning Words from Images and Speech, in `NIPS Workshop on Learning Semantics'.

Gentner, D. (1982), 'Why nouns are learned before verbs: Linguistic relativity versus natural partitioning', Language 2, 301-334

Harwath, D. & Glass, J. R. (2017), Learning Word-Like Units from Joint Audio-Visual Analysis, in R. Barzilay & M. Kan, eds, 'Proceedings of the 55th Annual Meeting of the Association for Coputational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers', Association for Computational Linguistics, pp. 506-517.

Harwath, D. & Glass, J. R. (2019), Towards Visually Grounded Sub-word Speech Unit Discovery, in `IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2019, Brighton, United Kingdom, May 12-17, 2019', Ieee, pp. 3017-3021.

Harwath, D., Chuang, G. & Glass, J. (2018), Vision as an Interlingua: Learning Multilingual Semantic Embeddings of Untranscribed Speech, in `2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)', pp. 4969-4973.

Haryu, E. & Kajikawa, S. (2016), 'Use of bound morphemes (noun particles) in word segmentation by Japanese-learning infants', Journal of Memory and Language 88(C), 18-27.

Havron, N., Raviv, L. & Arnon, I. (2018), `Literate and preliterate children show different learning patterns in an artificial language learning task', Journal of Cultural Cognitive Science 2(1-2), 21-33.

Kreutzer, J. & Sokolov, A. (2018), `Learning to Segment Inputs for NMT Favors Character-Level Processing', Proceedings of the International Workshop on SpokenLanguage Translation October 29-30, 2018 Bruges, Belgium 1, 166-172.

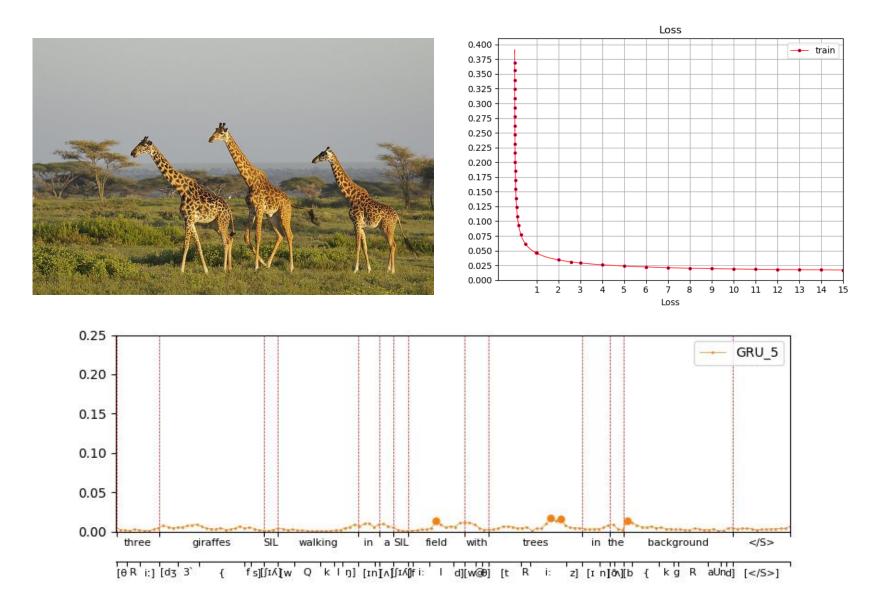
Landau, B. & Gleitman, L. (1985), Language and Experience: Evidence from the Blind Child, Cognitive Science Series, Harvard University Press

Merkx, D., Frank, S. L. & Ernestus, M. (2019), Language Learning Using Speech to Image Retrieval, in `Interspeech 2019, 20st Annual Conference of the International Speech Communication Association, Graz, Austria, 15-19 September 2019', pp. 1841-1845.

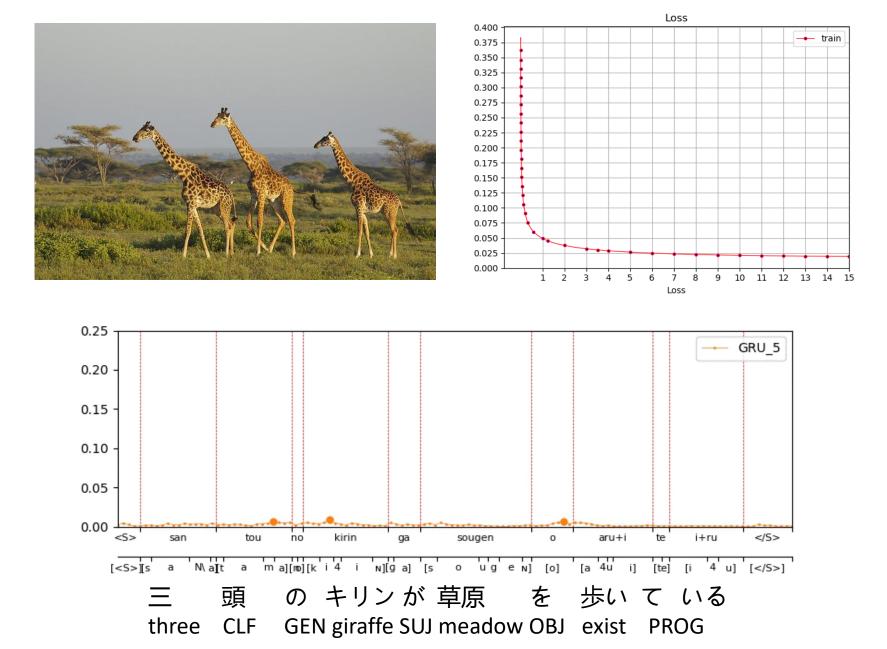
Shain, C. & Elsner, M. (2020), Acquiring language from speech by learning to remember and predict, in 'Proceedings of the 24th Conference on Computational Natural Language Learning', Association for Computational Linguistics, Online, pp. 195-214.

Tsutsui, S., Chandrasekaran, A., Reza, M. A., Crandall, D. J. & Yu, C. (2020), A computational Model of Early Word Learning from the Infant's Point of View, in 'Proceedings of the 42th Annual Meeting of the Cognitive Science Society – Developing a Mind: Learning in Humans, Animals, and Machines, CogSci 2020, virtual, July 29 - August 1, 2020', cognitivesciencesociety.org.

BEHAVIOUR OF ATTENTION — ENGLISH



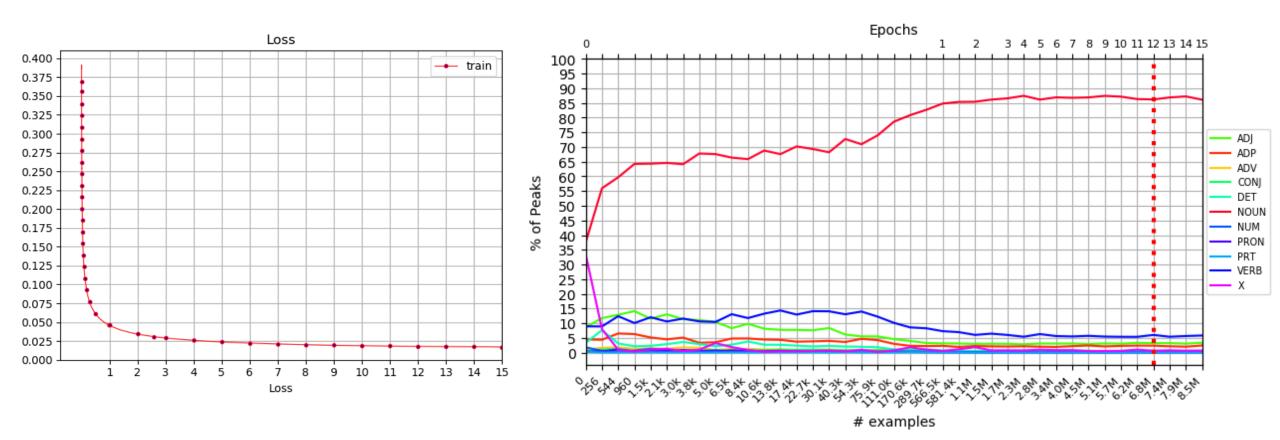
BEHAVIOUR OF ATTENTION — JAPANESE



58

BEHAVIOUR OF ATTENTION OVER TIME

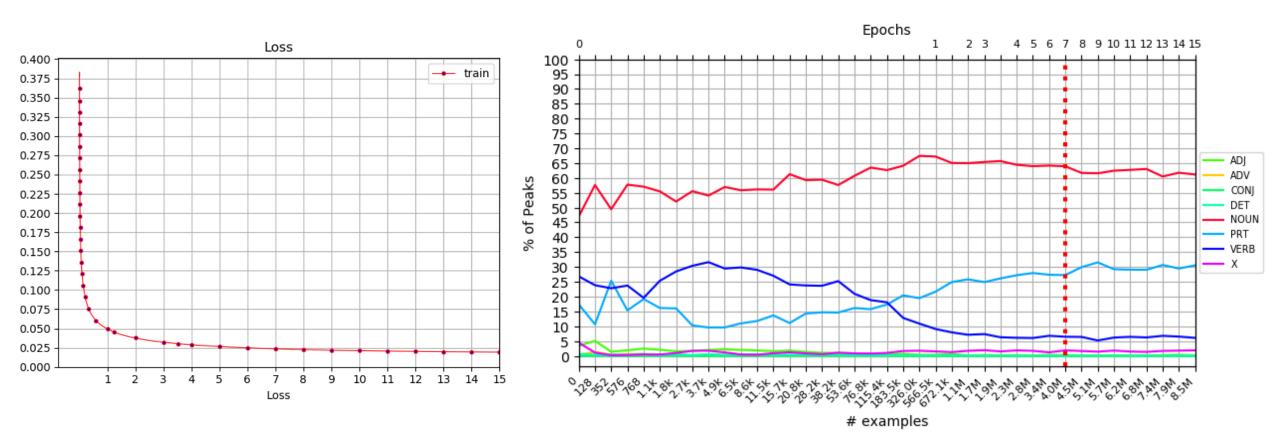
POS distribution GRU 5 - COCO



- Models quickly learn to focus on important nouns (English)
- Visible with only 256 examples

BEHAVIOUR OF ATTENTION OVER TIME

POS distribution GRU 5 - STAIR



- Behaviour less clear-cut
- Focus on particles is gradual

